Difference between revisions of "1965 AHSME Problems/Problem 8"

m (fixed typo)
(Solution)
Line 11: Line 11:
  
 
== Solution ==
 
== Solution ==
<math>\fbox{A}</math>
+
 
 +
<asy>
 +
draw((0,0)--(18,0));
 +
dot((0,0));
 +
label("A", (-1.5,-0.5));
 +
dot((18,0));
 +
label("B",(19.5,-0.5));
 +
 
 +
label("$18$", (9,-1.5));
 +
 
 +
draw((0,0)--(5,10)--(18,0));
 +
dot((5,10));
 +
label("E", (6,11.5));
 +
 
 +
draw((0.918,1.835)--(15.615,1.835));
 +
dot((0.918,1.835));
 +
label("D", (-0.65,2.25));
 +
dot((15.615,1.835));
 +
label("C", (17.25,2.25));
 +
 
 +
</asy>
 +
 
 +
Let the given triangle be <math>\triangle ABE</math> with <math>AB=18</math>. Also, let <math>\overline{CD} \parallel \overline{AB}</math> with <math>C</math> on <math>\overline{BE}</math> and <math>D</math> on <math>\overline{AE}</math>. We know from the problem that <math>[ABCD]=\frac{1}{3}[\triangle ABE]</math>, so <math>[\triangle DCE]=\frac{2}{3}[\triangle ABE]</math>. Because <math>\overline{DC} \parallel \overline{AB}</math>, <math>\triangle DCE \sim \triangle ABE</math> by [[AA similarity]]. Because the ratio of these two triangles' areas is <math>\frac{2}{3}</math>, the ratio of their sides must be <math>\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}</math>. Thus, <math>CD=\frac{\sqrt{6}}{3}AB=\frac{\sqrt{6}}{3}*18=\boxed{6\sqrt{6}}</math>, which is answer choice <math>\fbox{A}</math>.
  
 
==See Also==
 
==See Also==

Revision as of 09:53, 18 July 2024

Problem

One side of a given triangle is 18 inches. Inside the triangle a line segment is drawn parallel to this side forming a trapezoid whose area is one-third of that of the triangle. The length of this segment, in inches, is:

$\textbf{(A)}\ 6\sqrt {6} \qquad  \textbf{(B) }\ 9\sqrt {2} \qquad  \textbf{(C) }\ 12 \qquad  \textbf{(D) }\ 6\sqrt{3}\qquad \textbf{(E) }\ 9$

Solution

[asy] draw((0,0)--(18,0)); dot((0,0)); label("A", (-1.5,-0.5)); dot((18,0)); label("B",(19.5,-0.5));  label("$18$", (9,-1.5));  draw((0,0)--(5,10)--(18,0)); dot((5,10)); label("E", (6,11.5));  draw((0.918,1.835)--(15.615,1.835)); dot((0.918,1.835)); label("D", (-0.65,2.25)); dot((15.615,1.835)); label("C", (17.25,2.25));  [/asy]

Let the given triangle be $\triangle ABE$ with $AB=18$. Also, let $\overline{CD} \parallel \overline{AB}$ with $C$ on $\overline{BE}$ and $D$ on $\overline{AE}$. We know from the problem that $[ABCD]=\frac{1}{3}[\triangle ABE]$, so $[\triangle DCE]=\frac{2}{3}[\triangle ABE]$. Because $\overline{DC} \parallel \overline{AB}$, $\triangle DCE \sim \triangle ABE$ by AA similarity. Because the ratio of these two triangles' areas is $\frac{2}{3}$, the ratio of their sides must be $\sqrt{\frac{2}{3}}=\frac{\sqrt{6}}{3}$. Thus, $CD=\frac{\sqrt{6}}{3}AB=\frac{\sqrt{6}}{3}*18=\boxed{6\sqrt{6}}$, which is answer choice $\fbox{A}$.

See Also

1965 AHSC (ProblemsAnswer KeyResources)
Preceded by
Problem 7
Followed by
Problem 9
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions