Difference between revisions of "1959 AHSME Problems/Problem 38"

(Add problem statement & Unify answer)
Line 1: Line 1:
 +
== Problem ==
 +
 +
If <math>4x+\sqrt{2x}=1</math>, then <math>x</math>:
 +
<math>\textbf{(A)}\ \text{is an integer} \qquad\textbf{(B)}\ \text{is fractional}\qquad\textbf{(C)}\ \text{is irrational}\qquad\textbf{(D)}\ \text{is imaginary}\qquad\textbf{(E)}\ \text{may have two different values} </math>
 +
 +
== Solution ==
 +
 
Subtract 4x from both sides so you get:
 
Subtract 4x from both sides so you get:
 
<math>\sqrt{2x}=1-4x</math>
 
<math>\sqrt{2x}=1-4x</math>
Line 5: Line 12:
 
<math>x=\frac{1}{8}</math>
 
<math>x=\frac{1}{8}</math>
  
This is answer choice B.
+
This is answer choice <math>\boxed{B}</math>.

Revision as of 13:04, 16 July 2024

Problem

If $4x+\sqrt{2x}=1$, then $x$: $\textbf{(A)}\ \text{is an integer} \qquad\textbf{(B)}\ \text{is fractional}\qquad\textbf{(C)}\ \text{is irrational}\qquad\textbf{(D)}\ \text{is imaginary}\qquad\textbf{(E)}\ \text{may have two different values}$

Solution

Subtract 4x from both sides so you get: $\sqrt{2x}=1-4x$

Then just square and simplify to get: $x=\frac{1}{8}$

This is answer choice $\boxed{B}$.