Difference between revisions of "1965 AHSME Problems/Problem 24"

(Add statement & Unify answer)
Line 1: Line 1:
Option E: 11
+
== Problem ==
 +
 
 +
Given the sequence <math>10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}</math>,
 +
the smallest value of n such that the product of the first <math>n</math> members of this sequence exceeds <math>100000</math> is:
 +
 
 +
<math>\textbf{(A)}\ 7 \qquad
 +
\textbf{(B) }\ 8 \qquad
 +
\textbf{(C) }\ 9 \qquad
 +
\textbf{(D) }\ 10 \qquad
 +
\textbf{(E) }\ 11 </math> 
 +
 
 +
== Answer ==
 +
 
 +
<math>\boxed{E}</math>

Revision as of 12:52, 16 July 2024

Problem

Given the sequence $10^{\frac {1}{11}},10^{\frac {2}{11}},10^{\frac {3}{11}},\ldots,10^{\frac {n}{11}}$, the smallest value of n such that the product of the first $n$ members of this sequence exceeds $100000$ is:

$\textbf{(A)}\ 7 \qquad  \textbf{(B) }\ 8 \qquad  \textbf{(C) }\ 9 \qquad  \textbf{(D) }\ 10 \qquad  \textbf{(E) }\ 11$

Answer

$\boxed{E}$