Difference between revisions of "1965 AHSME Problems/Problem 18"

(Created page with "<math> \frac{1}{1 + y} = \frac{1 - y}{1 - y^2}</math> <math> \frac{1 - y}{\frac{1 - y}{1 - y^2}} = 1 - y^2</math> <math> \boxed{(B) y^2}</math>")
 
(Add problem statement)
Line 1: Line 1:
 +
== Problem ==
 +
 +
If <math>1 - y</math> is used as an approximation to the value of <math>\frac {1}{1 + y}, |y| < 1</math>, the ratio of the error made to the correct value is:
 +
 +
<math>\textbf{(A)}\ y \qquad
 +
\textbf{(B) }\ y^2 \qquad
 +
\textbf{(C) }\ \frac {1}{1 + y} \qquad
 +
\textbf{(D) }\ \frac{y}{1+y}\qquad
 +
\textbf{(E) }\ \frac{y^2}{1+y}\qquad </math>
 +
 +
== Solution ==
 +
 
<math> \frac{1}{1 + y} = \frac{1 - y}{1 - y^2}</math>
 
<math> \frac{1}{1 + y} = \frac{1 - y}{1 - y^2}</math>
  

Revision as of 12:51, 16 July 2024

Problem

If $1 - y$ is used as an approximation to the value of $\frac {1}{1 + y}, |y| < 1$, the ratio of the error made to the correct value is:

$\textbf{(A)}\ y \qquad  \textbf{(B) }\ y^2 \qquad  \textbf{(C) }\ \frac {1}{1 + y} \qquad  \textbf{(D) }\ \frac{y}{1+y}\qquad \textbf{(E) }\ \frac{y^2}{1+y}\qquad$

Solution

$\frac{1}{1 + y} = \frac{1 - y}{1 - y^2}$

$\frac{1 - y}{\frac{1 - y}{1 - y^2}} = 1 - y^2$

$\boxed{(B) y^2}$