Difference between revisions of "2002 AMC 10P Problems/Problem 11"
Line 1: | Line 1: | ||
− | == Problem | + | == Problem == |
− | + | Let <math>P(x)=kx^3 + 2k^2x^2+k^3.</math> Find the sum of all real numbers <math>k</math> for which <math>x-2</math> is a factor of <math>P(x).</math> | |
− | |||
− | |||
− | |||
− | <math> | ||
− | |||
− | <math> | ||
− | |||
− | |||
− | |||
− | |||
<math> | <math> | ||
− | \text{(A) | + | \text{(A) }-8 |
\qquad | \qquad | ||
− | \text{(B) | + | \text{(B) }-4 |
\qquad | \qquad | ||
− | \text{(C) | + | \text{(C) }0 |
\qquad | \qquad | ||
− | \text{(D) | + | \text{(D) }5 |
\qquad | \qquad | ||
− | \text{(E) | + | \text{(E) }8 |
</math> | </math> | ||
Revision as of 17:46, 14 July 2024
Problem
Let Find the sum of all real numbers for which is a factor of
Solution 1
See also
2002 AMC 10P (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.