Difference between revisions of "1995 IMO Problems/Problem 3"

(Created page with "==Problem== Determine all integers <math>n>3</math> for which there exist <math>n</math> points <math>A_1,\ldots,A_n</math> in the plane, no three collinear, and real numbers...")
 
m
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Determine all integers <math>n>3</math> for which there exist <math>n</math> points <math>A_1,\ldots,A_n</math> in the plane, no three collinear, and real numbers <math>r_1,\ldots,r_n</math> such that for <math>1\le i<j<k\le n</math>, the area of <math>\triangle A_iA_jA_k</math> is <math>r_i+r_j+r_k</math>.
 
Determine all integers <math>n>3</math> for which there exist <math>n</math> points <math>A_1,\ldots,A_n</math> in the plane, no three collinear, and real numbers <math>r_1,\ldots,r_n</math> such that for <math>1\le i<j<k\le n</math>, the area of <math>\triangle A_iA_jA_k</math> is <math>r_i+r_j+r_k</math>.
 +
 +
{{IMO box|year=1995|num-b=2|num-a=4}}

Revision as of 20:24, 4 July 2024

Problem

Determine all integers $n>3$ for which there exist $n$ points $A_1,\ldots,A_n$ in the plane, no three collinear, and real numbers $r_1,\ldots,r_n$ such that for $1\le i<j<k\le n$, the area of $\triangle A_iA_jA_k$ is $r_i+r_j+r_k$.

1995 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions