Difference between revisions of "1995 IMO Problems/Problem 2"
m (→Solution 6) |
m |
||
Line 111: | Line 111: | ||
[[Category:Olympiad Algebra Problems]] | [[Category:Olympiad Algebra Problems]] | ||
+ | {{IMO box|year=1995|num-b=1|num-a=3}} |
Revision as of 20:23, 4 July 2024
Contents
Problem
(Nazar Agakhanov, Russia) Let be positive real numbers such that . Prove that
Solution
Solution 1
We make the substitution , , . Then Since and are similarly sorted sequences, it follows from the Rearrangement Inequality that By the Power Mean Inequality, Symmetric application of this argument yields Finally, AM-GM gives us as desired.
Solution 2
We make the same substitution as in the first solution. We note that in general, It follows that and are similarly sorted sequences. Then by Chebyshev's Inequality, By AM-GM, , and by Nesbitt's Inequality, The desired conclusion follows.
Solution 3
Without clever substitutions: By Cauchy-Schwarz, Dividing by gives by AM-GM.
Solution 3b
Without clever notation: By Cauchy-Schwarz,
Dividing by and noting that by AM-GM gives as desired.
Solution 4
After the setting and as so concluding
By Titu Lemma, Now by AM-GM we know that and which concludes to
Therefore we get
Hence our claim is proved ~~ Aritra12
Solution 5
Proceed as in Solution 1, to arrive at the equivalent inequality But we know that by AM-GM. Furthermore, by Cauchy-Schwarz, and so dividing by gives as desired.
Solution 6
Without clever substitutions, and only AM-GM!
Note that . The cyclic sum becomes . Note that by AM-GM, the cyclic sum is greater than or equal to . We now see that we have the three so we must be on the right path. We now only need to show that . Notice that by AM-GM, , , and . Thus, we see that , concluding that .
Solution 7 from Brilliant Wiki (Muirheads) =
https://brilliant.org/wiki/muirhead-inequality/
Solution 8 (fast Titu's Lemma no substitutions)
Rewrite as .
Now applying Titu's lemma yields .
Now applying the AM-GM inequality on . The result now follows.
Note: , because . (Why? Because , and hence ).
~th1nq3r
Scroll all the way down
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.
Resources
1995 IMO (Problems) • Resources | ||
Preceded by Problem 1 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 3 |
All IMO Problems and Solutions |