Difference between revisions of "2015 IMO Problems/Problem 3"

m (Solution)
m (Solution)
Line 13: Line 13:
 
We know that there is a negative inversion which is at <math>H</math> and swaps the nine-point circle and <math>\gamma</math>. And this maps:
 
We know that there is a negative inversion which is at <math>H</math> and swaps the nine-point circle and <math>\gamma</math>. And this maps:
  
<math>A \longleftrightarrow F</math>. Also, let <math>M \longleftrightarrow Q`</math>. Of course <math>\triange HFM \sim \triange HQ'A</math> so <math>\angle HQ'A = 90</math>. Hence, <math>Q' = Q</math>. So:
+
<math>A \longleftrightarrow F</math>. Also, let <math>M \longleftrightarrow Q`</math>. Of course <math>\triangle HFM \sim \triangle HQ'A</math> so <math>\angle HQ'A = 90</math>. Hence, <math>Q' = Q</math>. So:
  
 
<math>M \longleftrightarrow Q</math>. Let <math>HA</math> and <math>HQ</math> intersect with nine-point circle <math>T</math> and <math>Q</math>, respectively. Let's define the point <math>L</math> such that <math>TNML</math> is rectangle. We have found <math>M \longleftrightarrow Q</math> and if we do the same thing, we find:
 
<math>M \longleftrightarrow Q</math>. Let <math>HA</math> and <math>HQ</math> intersect with nine-point circle <math>T</math> and <math>Q</math>, respectively. Let's define the point <math>L</math> such that <math>TNML</math> is rectangle. We have found <math>M \longleftrightarrow Q</math> and if we do the same thing, we find:

Revision as of 13:41, 1 June 2024

Let $ABC$ be an acute triangle with $AB>AC$. Let $\Gamma$ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\Gamma$ such that $\angle HKQ=90^\circ$. Assume that the points $A$, $B$, $C$, $K$, and $Q$ are all different, and lie on $\Gamma$ in this order.

Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.

The Actual Problem

Let $ABC$ be an acute triangle with $AB > AC$. Let $\gamma$ be its circumcircle, $H$ its orthocenter, and $F$ the foot of the altitude from $A$. Let $M$ be the midpoint of $BC$. Let $Q$ be the point on $\gamma$ such that $\angle HQA = 90◦$ and let $K$ be the point on $\gamma$ such that $\angle HKQ = 90◦$ . Assume that the points $A$, $B$, $C$, $K$ and $Q$ are all different and lie on $\gamma$ in this order. Prove that the circumcircles of triangles $KQH$ and $FKM$ are tangent to each other.

Solution

up

We know that there is a negative inversion which is at $H$ and swaps the nine-point circle and $\gamma$. And this maps:

$A \longleftrightarrow F$. Also, let $M \longleftrightarrow Q`$. Of course $\triangle HFM \sim \triangle HQ'A$ so $\angle HQ'A = 90$. Hence, $Q' = Q$. So:

$M \longleftrightarrow Q$. Let $HA$ and $HQ$ intersect with nine-point circle $T$ and $Q$, respectively. Let's define the point $L$ such that $TNML$ is rectangle. We have found $M \longleftrightarrow Q$ and if we do the same thing, we find:

$L \longleftrightarrow K$. Now, we can say:

$(KQH) \longleftrightarrow ML$ and $(FKM) \longleftrightarrow (ALQ)$. İf we manage to show $ML$ and $(ALQ)$ are tangent, the proof ends.

We can easily say $TN || AQ$ and $AQ = 2.TN$ because $T$ and $N$ are the midpoints of $HA$ and $HQ$, respectively.

Because of the rectangle $TNML$, $TN || ML$ and $TN = ML$.

Hence, $ML || AQ$ and $AQ = 2.ML$ so $L$ is on the perpendecular bisector of $AQ$ and that follows $\triangle ALQ$ is isoceles. And we know that $ML || AQ$, so $ML$ is tangent to $(ALQ)$. We are done. $\blacksquare$

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2015 IMO (Problems) • Resources
Preceded by
Problem 2
1 2 3 4 5 6 Followed by
Problem 4
All IMO Problems and Solutions