Difference between revisions of "2007 AMC 10A Problems/Problem 21"
(soln) |
(No difference)
|
Revision as of 18:39, 5 January 2008
Problem
A sphere is inscribed in a cube that has a surface area of square meters. A second cube is then inscribed within the sphere. What is the surface area in square meters of the inner cube?
Solution
Solution 1
An image is supposed to go here. You can help us out by creating one and editing it in. Thanks.
We rotate the smaller cube around the sphere such that two opposite vertices of the cube are on opposite faces of the larger cube. Thus the main diagonal of the smaller cube is the side length of the outer square.
Let be the surface area of the inner square. The ratio of the areas of two similar figures is equal to the square of the ratio of their sides. As the diagonal of a cube has length where is a side of the cube, the ratio of a side of the inner square to that of the outer square (and the side of the outer square = the diagonal of the inner square), we have . Thus .
Solution 2 (computation)
The area of each face of the outer cube is , and the edge length of the outer cube is . This is also the diameter of the sphere, and thus the length of a long diagonal of the inner cube.
A long diagonal of a cube is the hypotenuse of a right triangle with a side of the cube and a face diagonal of the cube as legs. If a side of the cube is , we see that .
Thus the surface area of the inner cube is .
See also
2007 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |