Difference between revisions of "MIE 2016/Day 1/Problem 8"

(Created page with "===Problem 8=== Let <math>f(x)=\sqrt{|x-1|+|x-2|+|x-3|+...+|x-2017|}</math>. The minimum value of <math>f(x)</math> is in the interval: (a) <math>(-\infty,1008]</math> (b) <...")
 
(Solution)
Line 13: Line 13:
  
 
==Solution ==
 
==Solution ==
 +
The minimum value of this function is when <math>x</math> is in the middle between 1 and 2017. <math>\frac{2017+1}{2}=1009</math>
  
 
==See Also==
 
==See Also==

Revision as of 12:57, 9 May 2024

Problem 8

Let $f(x)=\sqrt{|x-1|+|x-2|+|x-3|+...+|x-2017|}$. The minimum value of $f(x)$ is in the interval:

(a) $(-\infty,1008]$

(b) $(1008,1009]$

(c) $(1009,1010]$

(d) $(1010,1011]$

(e) $(1011,+\infty)$

Solution

The minimum value of this function is when $x$ is in the middle between 1 and 2017. $\frac{2017+1}{2}=1009$

See Also