Difference between revisions of "2007 AMC 12A Problems/Problem 22"
m (→Solution 2: (blank edit) 2nd solution by Jacob Steinhardt) |
m (dup.) |
||
Line 1: | Line 1: | ||
+ | {{duplicate|[[2007 AMC 12A Problems|2007 AMC 12A #22]] and [[2007 AMC 10A Problems/Problem 25|2007 AMC 10A #25]]}} | ||
== Problem == | == Problem == | ||
− | For each positive integer <math>n</math>, let <math>S(n)</math> denote the sum of the digits of <math>n.</math> For how many values of <math>n</math> is <math> | + | For each positive integer <math>n</math>, let <math>S(n)</math> denote the sum of the digits of <math>n.</math> For how many values of <math>n</math> is <math>n + S(n) + S(S(n)) = 2007?</math> |
<math>\mathrm{(A)}\ 1 \qquad \mathrm{(B)}\ 2 \qquad \mathrm{(C)}\ 3 \qquad \mathrm{(D)}\ 4 \qquad \mathrm{(E)}\ 5</math> | <math>\mathrm{(A)}\ 1 \qquad \mathrm{(B)}\ 2 \qquad \mathrm{(C)}\ 3 \qquad \mathrm{(D)}\ 4 \qquad \mathrm{(E)}\ 5</math> | ||
Line 7: | Line 8: | ||
== Solution == | == Solution == | ||
=== Solution 1 === | === Solution 1 === | ||
− | For the sake of notation let <math>T(n) = n + S(n) + S(S(n))</math>. Obviously <math>n<2007</math>. Then the maximum value of <math> | + | For the sake of notation let <math>T(n) = n + S(n) + S(S(n))</math>. Obviously <math>n<2007</math>. Then the maximum value of <math>S(n) + S(S(n))</math> is when <math>n = 1999</math>, and the sum becomes <math>28 + 10 = 38</math>. So the minimum bound is <math>1969</math>. We do [[casework]] upon the tens digit: |
Case 1: <math>196u \Longrightarrow u = 9</math>. Easy to directly disprove. | Case 1: <math>196u \Longrightarrow u = 9</math>. Easy to directly disprove. | ||
− | Case 2: <math>197u</math>. <math>S(n) = 1 + 9 + 7 + u = 17 + u</math>, and <math>S(S(n)) = 8+u</math> if <math>u \le 2</math> and <math> | + | Case 2: <math>197u</math>. <math>S(n) = 1 + 9 + 7 + u = 17 + u</math>, and <math>S(S(n)) = 8+u</math> if <math>u \le 2</math> and <math>S(S(n)) = 2 + (u-3) = u-1</math> otherwise. |
:Subcase a: <math>T(n) = 1970 + u + 17 + u + 8 + u = 1995 + 3u = 2007 \Longrightarrow u = 4</math>. This exceeds our bounds, so no solution here. | :Subcase a: <math>T(n) = 1970 + u + 17 + u + 8 + u = 1995 + 3u = 2007 \Longrightarrow u = 4</math>. This exceeds our bounds, so no solution here. | ||
− | :Subcase b: <math> | + | :Subcase b: <math>T(n) = 1970 + u + 17 + u + u - 1 = 1986 + 3u = 2007 \Longrightarrow u = 7</math>. First solution. |
− | Case 3: <math>198u</math>. <math>S(n) = 18 + u</math>, and <math>S(S(n)) = 9 + u</math> if <math>u \le 1</math> and <math> | + | Case 3: <math>198u</math>. <math>S(n) = 18 + u</math>, and <math>S(S(n)) = 9 + u</math> if <math>u \le 1</math> and <math>2 + (u-2) = u</math> otherwise. |
− | :Subcase a: <math> | + | :Subcase a: <math>T(n) = 1980 + u + 18 + u + 9 + u = 2007 + 3u = 2007 \Longrightarrow u = 0</math>. Second solution. |
:Subcase b: <math>T(n) = 1980 + u + 18 + u + u = 1998 + 3u = 2007 \Longrightarrow u = 3</math>. Third solution. | :Subcase b: <math>T(n) = 1980 + u + 18 + u + u = 1998 + 3u = 2007 \Longrightarrow u = 3</math>. Third solution. | ||
− | Case 4: <math>199u</math>. But <math>S(n) > 19</math>, and the these clearly sum to <math> | + | Case 4: <math>199u</math>. But <math>S(n) > 19</math>, and the these clearly sum to <math>> 2007</math>. |
− | Case 5: <math>200u</math>. So <math>S(n) = 2 + u</math> and <math>S(S(n)) = 2 + u</math>, and <math> | + | Case 5: <math>200u</math>. So <math>S(n) = 2 + u</math> and <math>S(S(n)) = 2 + u</math>, and <math>2000 + u + 2 + u + 2 + u = 2004 + 3u = 2007 \Longrightarrow u = 1</math>. Fourth solution. |
In total we have <math>4 \mathrm{(D)}</math> solutions, which are <math>1977, 1980, 1983, </math> and <math>2001</math>. | In total we have <math>4 \mathrm{(D)}</math> solutions, which are <math>1977, 1980, 1983, </math> and <math>2001</math>. | ||
Line 32: | Line 33: | ||
Case 1: <math>n \geq 2000</math> | Case 1: <math>n \geq 2000</math> | ||
− | :Inspection gives <math> | + | :Inspection gives <math>n = 2001</math>. |
− | Case 2: <math> | + | Case 2: <math>n < 2000</math>, <math>n = 19xy</math>, <math>x + y < 10 </math> |
:If you set up an equation, it reduces to | :If you set up an equation, it reduces to | ||
Line 42: | Line 43: | ||
:which has as its only solution satisfying the constraints <math>x = 8</math>, <math>y = 0</math>. | :which has as its only solution satisfying the constraints <math>x = 8</math>, <math>y = 0</math>. | ||
− | Case 3: <math> | + | Case 3: <math>n < 2000</math>, <math>n = 19xy</math>, <math>x + y \geq 10</math> |
:This reduces to | :This reduces to | ||
− | :<math> | + | :<math>4x + y = 35</math>. The only two solutions satisfying the constraints for this equation are <math>x = 7</math>, <math>y = 7</math> and <math>x = 8</math>, <math>y = 3</math>. |
The solutions are thus <math>1977, 1980, 1983, 2001</math> and the answer is <math>\mathrm{(D)}\ 4</math>. | The solutions are thus <math>1977, 1980, 1983, 2001</math> and the answer is <math>\mathrm{(D)}\ 4</math>. |
Revision as of 16:55, 5 January 2008
- The following problem is from both the 2007 AMC 12A #22 and 2007 AMC 10A #25, so both problems redirect to this page.
Problem
For each positive integer , let denote the sum of the digits of For how many values of is
Solution
Solution 1
For the sake of notation let . Obviously . Then the maximum value of is when , and the sum becomes . So the minimum bound is . We do casework upon the tens digit:
Case 1: . Easy to directly disprove.
Case 2: . , and if and otherwise.
- Subcase a: . This exceeds our bounds, so no solution here.
- Subcase b: . First solution.
Case 3: . , and if and otherwise.
- Subcase a: . Second solution.
- Subcase b: . Third solution.
Case 4: . But , and the these clearly sum to .
Case 5: . So and , and . Fourth solution.
In total we have solutions, which are and .
Solution 2
Clearly, . We can break this up into three cases:
Case 1:
- Inspection gives .
Case 2: , ,
- If you set up an equation, it reduces to
- which has as its only solution satisfying the constraints , .
Case 3: , ,
- This reduces to
- . The only two solutions satisfying the constraints for this equation are , and , .
The solutions are thus and the answer is .
See also
2007 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |