Difference between revisions of "1974 AHSME Problems/Problem 26"

(Solution)
(Solution)
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
<math></math>The prime factorization of <math> 30 </math> is <math> 2\cdot3\cdot5 </math>, so the prime factorization of <math> 30^4 </math> is <math> 2^4\cdot3^4\cdot5^4 </math>. Therefore, the number of positive divisors of <math> 30^4 </math> is <math> (4+1)(4+1)(4+1)=125 </math>. However, we have to subtract <math> 2 </math> to account for <math> 1 </math> and <math> 30^4 </math>, so our final answer is <math> 125-2=123, \boxed{\text{C}} </math>$
+
<math>The prime factorization of </math> 30 <math> is </math> 2\cdot3\cdot5 <math>, so the prime factorization of </math> 30^4 <math> is </math> 2^4\cdot3^4\cdot5^4 <math>. Therefore, the number of positive divisors of </math> 30^4 <math> is </math> (4+1)(4+1)(4+1)=125 <math>. However, we have to subtract </math> 2 <math> to account for </math> 1 <math> and </math> 30^4 <math>, so our final answer is </math> 125-2=123, \boxed{\text{C}} $
  
 
==See Also==
 
==See Also==

Revision as of 01:26, 4 May 2024

Problem

The number of distinct positive integral divisors of $(30)^4$ excluding $1$ and $(30)^4$ is

$\mathrm{(A)\ } 100 \qquad \mathrm{(B) \ }125 \qquad \mathrm{(C) \  } 123 \qquad \mathrm{(D) \  } 30 \qquad \mathrm{(E) \  }\text{none of these}$

Solution

$The prime factorization of$ 30 $is$ 2\cdot3\cdot5 $, so the prime factorization of$ 30^4 $is$ 2^4\cdot3^4\cdot5^4 $. Therefore, the number of positive divisors of$ 30^4 $is$ (4+1)(4+1)(4+1)=125 $. However, we have to subtract$ 2 $to account for$ 1 $and$ 30^4 $, so our final answer is$ 125-2=123, \boxed{\text{C}} $

See Also

1974 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png