Difference between revisions of "2024 USAMO Problems/Problem 2"
Anyu-tsuruko (talk | contribs) (Created page with "Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\rig...") |
|||
Line 1: | Line 1: | ||
Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\right\}</math>, the size of the intersection of the sets in <math>T</math> is a multiple of the number of sets in <math>T</math>. What is the least possible number of elements that are in at least 50 sets? | Let <math>S_1, S_2, \ldots, S_{100}</math> be finite sets of integers whose intersection is not empty. For each non-empty <math>T \subseteq\left\{S_1, S_2, \ldots, S_{100}\right\}</math>, the size of the intersection of the sets in <math>T</math> is a multiple of the number of sets in <math>T</math>. What is the least possible number of elements that are in at least 50 sets? | ||
+ | |||
+ | ==Video Solution== | ||
+ | https://youtu.be/eguz1OuckH0 |
Latest revision as of 08:09, 5 April 2024
Let be finite sets of integers whose intersection is not empty. For each non-empty , the size of the intersection of the sets in is a multiple of the number of sets in . What is the least possible number of elements that are in at least 50 sets?