Difference between revisions of "2024 USAJMO Problems"

(Problem 3)
Line 16: Line 16:
  
 
[[2024 USAJMO Problems/Problem 3|Solution]]
 
[[2024 USAJMO Problems/Problem 3|Solution]]
 +
 +
== See also ==
 +
 +
{{USAJMO box|year=2024|before=[[2023 USAJMO Problems]]|after=[[2025 USAJMO Problems]]}}
 +
{{MAA Notice}}

Revision as of 20:39, 19 March 2024

Day 1

Problem 1

Let $ABCD$ be a cyclic quadrilateral with $AB=7$ and $CD=8$. Points $P$ and $Q$ are selected on line segment $AB$ so that $AP=BQ=3$. Points $R$ and $S$ are selected on line segment $CD$ so that $CR=DS=2$. Prove that $PQRS$ is a quadrilateral.

Solution

Problem 2

Let $m$ and $n$ be positive integers. Let $S$ be the set of integer points $(x,y)$ with $1\leq x\leq2m$ and $1\leq y\leq2n$. A configuration of $mn$ rectangles is called happy if each point in $S$ is a vertex of exactly one rectangle, and all rectangles have sides parallel to the coordinate axes. Prove that the number of happy configurations is odd.

Solution

Problem 3

Let $a(n)$ be the sequence defined by $a(1)=2$ and $a(n+1)=(a(n))^{n+1}-1$ for each integer $n\geq1$. Suppose that $p>2$ is prime and $k$ is a positive integer. Prove that some term of the sequence $a(n)$ is divisible by $p^k$.

Solution

See also

2024 USAJMO (ProblemsResources)
Preceded by
2023 USAJMO Problems
Followed by
2025 USAJMO Problems
1 2 3 4 5 6
All USAJMO Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png