Difference between revisions of "1983 AIME Problems/Problem 9"

(fmt)
m (minor)
Line 3: Line 3:
  
 
== Solution ==
 
== Solution ==
Let <math>y=x\sin{x}</math>.
+
Let <math>y=x\sin{x}</math>. We can rewrite the expression as <math>\frac{9y^2+4}{y}=9y+\frac{4}{y}</math>.
  
We can rewrite the expression as <math>\frac{9y^2+4}{y}=9y+\frac{4}{y}</math>.
+
Since <math>x>0</math> and <math>\sin{x}>0</math> because <math>0< x<\pi</math>, we have <math>y>0</math>. So we can apply [[AM-GM]]:
  
Since <math>x>0</math> and <math>\sin{x}>0</math> because <math>0< x<\pi</math>, we have <math>y>0</math>.
+
<cmath>9y+\frac{4}{y}\ge 2\sqrt{9y\cdot\frac{4}{y}}=12</cmath>
  
So we can apply [[AM-GM]]:
+
The equality holds when <math>9y=\frac{4}{y}\Longleftrightarrow y^2=\frac49\Longleftrightarrow y=\frac23</math>.
 
 
<math>9y+\frac{4}{y}\ge 2\sqrt{9y\cdot\frac{4}{y}}=12</math>
 
 
 
The equality holds when <math>9y=\frac{4}{y}\Longleftrightarrow y^2=\frac49\Longleftrightarrow y=\frac23</math>
 
 
 
Therefore, the minimum value is <math>12</math> (when <math>x\sin{x}=\frac23</math>).
 
  
 +
Therefore, the minimum value is <math>\boxed{012}</math> (when <math>x\sin{x}=\frac23</math>; since <math>x\sin x</math> is continuous and increasing on the interval <math>0 \le x \le \frac{\pi}{2}</math> and its range on that interval is from <math>0 \le x\sin x \le \frac{\pi}{2}</math>, by the [[Intermediate Value Theorem]] this value is attainable).
  
 
== See also ==
 
== See also ==

Revision as of 16:41, 31 December 2007

Problem

Find the minimum value of $\frac{9x^2\sin^2 x + 4}{x\sin x}$ for $0 < x < \pi$.

Solution

Let $y=x\sin{x}$. We can rewrite the expression as $\frac{9y^2+4}{y}=9y+\frac{4}{y}$.

Since $x>0$ and $\sin{x}>0$ because $0< x<\pi$, we have $y>0$. So we can apply AM-GM:

\[9y+\frac{4}{y}\ge 2\sqrt{9y\cdot\frac{4}{y}}=12\]

The equality holds when $9y=\frac{4}{y}\Longleftrightarrow y^2=\frac49\Longleftrightarrow y=\frac23$.

Therefore, the minimum value is $\boxed{012}$ (when $x\sin{x}=\frac23$; since $x\sin x$ is continuous and increasing on the interval $0 \le x \le \frac{\pi}{2}$ and its range on that interval is from $0 \le x\sin x \le \frac{\pi}{2}$, by the Intermediate Value Theorem this value is attainable).

See also

1983 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions