Difference between revisions of "Schur's Inequality"
m (Schur's inequality moved to Schur's Inequality over redirect) |
(wikify) |
||
Line 1: | Line 1: | ||
− | '''Schur's Inequality''' states that for all non-negative <math>a,b,c \in \mathbb{R}</math> and <math>r>0</math>: | + | '''Schur's Inequality''' is an [[inequality]] that holds for [[positive number]]s. It is named for Issai Schur. |
+ | |||
+ | |||
+ | == Theorem == | ||
+ | Schur's inequality states that for all non-negative <math>a,b,c \in \mathbb{R}</math> and <math>r>0</math>: | ||
<math>{a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b) \geq 0}</math> | <math>{a^r(a-b)(a-c)+b^r(b-a)(b-c)+c^r(c-a)(c-b) \geq 0}</math> | ||
Line 16: | Line 20: | ||
=== Proof === | === Proof === | ||
− | [[WLOG]], let <math>{a \geq b \geq c}</math>. Note that <math>a^r(a-b)(a-c)+b^r(b-a)(b-c) = a^r(a-b)(a-c)-b^r(a-b)(b-c) = (a-b)(a^r(a-c)-b^r(b-c))</math>. Clearly, <math>a^r \geq b^r \geq 0</math>, and <math>a-c \geq b-c \geq 0</math>. Thus, <math>(a-b)(a^r(a-c)-b^r(b-c)) \geq 0 \rightarrow a^r(a-b)(a-c)+b^r(b-a)(b-c) \geq 0</math>. However, <math>c^r(c-a)(c-b) \geq 0</math>, and thus the proof is complete. | + | [[WLOG]], let <math>{a \geq b \geq c}</math>. Note that <math>a^r(a-b)(a-c)+b^r(b-a)(b-c)</math> <math>= a^r(a-b)(a-c)-b^r(a-b)(b-c) = (a-b)(a^r(a-c)-b^r(b-c))</math>. Clearly, <math>a^r \geq b^r \geq 0</math>, and <math>a-c \geq b-c \geq 0</math>. Thus, <math>(a-b)(a^r(a-c)-b^r(b-c)) \geq 0 \rightarrow a^r(a-b)(a-c)+b^r(b-a)(b-c) \geq 0</math>. However, <math>c^r(c-a)(c-b) \geq 0</math>, and thus the proof is complete. |
Line 27: | Line 31: | ||
The standard form of Schur's is the case of this inequality where <math>x=a,\ y=b,\ z=c,\ k=1,\ f(m)=m^r</math>. | The standard form of Schur's is the case of this inequality where <math>x=a,\ y=b,\ z=c,\ k=1,\ f(m)=m^r</math>. | ||
− | + | == References == | |
* Mildorf, Thomas; ''Olympiad Inequalities''; January 20, 2006; <http://www.mit.edu/~tmildorf/Inequalities.pdf> | * Mildorf, Thomas; ''Olympiad Inequalities''; January 20, 2006; <http://www.mit.edu/~tmildorf/Inequalities.pdf> | ||
Line 33: | Line 37: | ||
* Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania. | * Vornicu, Valentin; ''Olimpiada de Matematica... de la provocare la experienta''; GIL Publishing House; Zalau, Romania. | ||
− | ==See | + | ==See Also== |
* [[Olympiad Mathematics]] | * [[Olympiad Mathematics]] | ||
* [[Inequalities]] | * [[Inequalities]] |
Revision as of 13:29, 27 December 2007
Schur's Inequality is an inequality that holds for positive numbers. It is named for Issai Schur.
Theorem
Schur's inequality states that for all non-negative and :
The four equality cases occur when or when two of are equal and the third is .
Common Cases
The case yields the well-known inequality:
When , an equivalent form is:
Proof
WLOG, let . Note that . Clearly, , and . Thus, . However, , and thus the proof is complete.
Generalized Form
It has been shown by Valentin Vornicu that a more general form of Schur's Inequality exists. Consider , where , and either or . Let , and let be either convex or monotonic. Then,
.
The standard form of Schur's is the case of this inequality where .
References
- Mildorf, Thomas; Olympiad Inequalities; January 20, 2006; <http://www.mit.edu/~tmildorf/Inequalities.pdf>
- Vornicu, Valentin; Olimpiada de Matematica... de la provocare la experienta; GIL Publishing House; Zalau, Romania.