Difference between revisions of "2025 AMC 8 Problems/Problem 9"

m (Unnecessary)
(Tag: Blanking)
(2025 AMC 8 Problem 9)
Line 1: Line 1:
 +
There are <math>10</math> matchsticks on the table. Percy takes <math>1</math>, <math>2</math> or <math>3</math> matchsticks each time. How many ways are there for him to take all the matchsticks?
  
 +
<math>\textbf{(A)}\ 274 \qquad \textbf{(B)}\ 275 \qquad \textbf{(C)}\ 276 \qquad \textbf{(D)}\ 280 \qquad \textbf{(E)}\ 295</math>

Revision as of 08:33, 23 February 2024

There are $10$ matchsticks on the table. Percy takes $1$, $2$ or $3$ matchsticks each time. How many ways are there for him to take all the matchsticks?

$\textbf{(A)}\ 274 \qquad \textbf{(B)}\ 275 \qquad \textbf{(C)}\ 276 \qquad \textbf{(D)}\ 280 \qquad \textbf{(E)}\ 295$