Difference between revisions of "2025 AMC 8 Problems/Problem 1"
m (Formula 1) |
m (Font) |
||
Line 1: | Line 1: | ||
− | Let m and n be 2 integers such that m > n. Suppose m + n = 20, | + | Let m and n be 2 integers such that m <math>></math> n. Suppose m + n = 20, <math>m^2</math> + <math>n^2</math> = 328, find <math>m^2</math> - <math>n^2</math>. |
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> | <math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> |
Revision as of 07:33, 18 February 2024
Let m and n be 2 integers such that m n. Suppose m + n = 20, + = 328, find - .