Difference between revisions of "2025 AMC 8 Problems/Problem 1"

m (Formula 1)
m (Font)
Line 1: Line 1:
Let m and n be 2 integers such that m > n. Suppose m + n = 20, + = 328, find - .
+
Let m and n be 2 integers such that m <math>></math> n. Suppose m + n = 20, <math>m^2</math> + <math>n^2</math> = 328, find <math>m^2</math> - <math>n^2</math>.
  
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>

Revision as of 07:33, 18 February 2024

Let m and n be 2 integers such that m $>$ n. Suppose m + n = 20, $m^2$ + $n^2$ = 328, find $m^2$ - $n^2$.

$\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340$