Difference between revisions of "2025 AMC 8 Problems/Problem 1"
m (Formula) |
m (Formula 1) |
||
Line 1: | Line 1: | ||
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n². | Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n². | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> | <math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math> |
Revision as of 07:26, 18 February 2024
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².