Difference between revisions of "2025 AMC 8 Problems/Problem 1"

m (Formula)
m (Formula 1)
Line 1: Line 1:
 
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².
 
Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².
 
A) 280
 
B) 292
 
C) 300
 
D) 320
 
E) 340
 
  
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>
 
<math>\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340</math>

Revision as of 07:26, 18 February 2024

Let m and n be 2 integers such that m > n. Suppose m + n = 20, m² + n² = 328, find m² - n².

$\textbf{(A)}\ 280 \qquad \textbf{(B)}\ 292 \qquad \textbf{(C)}\ 300 \qquad \textbf{(D)}\ 320 \qquad \textbf{(E)}\ 340$