Difference between revisions of "2024 AIME II Problems/Problem 10"
(→Problem) |
(→Problem) |
||
Line 12: | Line 12: | ||
pair O=circumcenter(A,B,C); | pair O=circumcenter(A,B,C); | ||
pair L=extension(C,D,A,B); | pair L=extension(C,D,A,B); | ||
− | dot(I^^A^^B^^C^^D); | + | dot(I^^O^^A^^B^^C^^D); |
draw(C--D); | draw(C--D); | ||
path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} | path midangle(pair d,pair e,pair f) {return e--e+((f-e)/length(f-e)+(d-e)/length(d-e))/2;} |
Revision as of 13:58, 12 February 2024
Problem
Let have circumcenter and incenter with , circumradius , and inradius . Find .
Solution in Progress ~KingRavi
Solution
By Euler's formula , we have . Thus, by the Pythagorean theorem, . Let ; notice is isosceles and which is enough to imply that is the midpoint of , and itself is the midpoint of where is the -excenter of . Therefore, and
Note that this problem is extremely similar to 2019 CIME I/14.
Solution 2
Denote . By the given condition, , where is the area of .
Moreover, since , the second intersection of the line and is the reflection of about , denote that as . By the incenter-excenter lemma, .
Thus, we have . Now, we have
~Bluesoul
Solution 3
Denote by and the circumradius and inradius, respectively.
First, we have \[ r = 4 R \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} \hspace{1cm} (1) \]
Second, because , \begin{align*} AI & = AO \cos \angle IAO \\ & = AO \cos \left( 90^\circ - C - \frac{A}{2} \right) \\ & = AO \sin \left( C + \frac{A}{2} \right) \\ & = R \sin \left( C + \frac{180^\circ - B - C}{2} \right) \\ & = R \cos \frac{B - C}{2} . \end{align*}
Thus, \begin{align*} r & = AI \sin \frac{A}{2} \\ & = R \sin \frac{A}{2} \cos \frac{B-C}{2} \hspace{1cm} (2) \end{align*}
Taking , we get \[ 4 \sin \frac{B}{2} \sin \frac{C}{2} = \cos \frac{B-C}{2} . \]
We have \begin{align*} 2 \sin \frac{B}{2} \sin \frac{C}{2} & = - \cos \frac{B+C}{2} + \cos \frac{B-C}{2} . \end{align*}
Plugging this into the above equation, we get \[ \cos \frac{B-C}{2} = 2 \cos \frac{B+C}{2} . \hspace{1cm} (3) \]
Now, we analyze Equation (2). We have \begin{align*} \frac{r}{R} & = \sin \frac{A}{2} \cos \frac{B-C}{2} \\ & = \sin \frac{180^\circ - B - C}{2} \cos \frac{B-C}{2} \\ & = \cos \frac{B+C}{2} \cos \frac{B-C}{2} \hspace{1cm} (4) \end{align*}
Solving Equations (3) and (4), we get \[ \cos \frac{B+C}{2} = \sqrt{\frac{r}{2R}}, \hspace{1cm} \cos \frac{B-C}{2} = \sqrt{\frac{2r}{R}} . \hspace{1cm} (5) \]
Now, we compute . We have \begin{align*} AB \cdot AC & = 2R \sin C \cdot 2R \sin B \\ & = 2 R^2 \left( - \cos \left( B + C \right) + \cos \left( B - C \right) \right) \\ & = 2 R^2 \left( - \left( 2 \left( \cos \frac{B+C}{2} \right)^2 - 1 \right) + \left( 2 \left( \cos \frac{B-C}{2} \right)^2 - 1 \right) \right) \\ & = 6 R r \\ & = \boxed{\textbf{(468) }} \end{align*} where the first equality follows from the law of sines, the fourth equality follows from (5).
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME II (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.