Difference between revisions of "2024 AIME II Problems/Problem 12"
(→Solution 1) |
|||
Line 24: | Line 24: | ||
</asy> | </asy> | ||
− | Let <math>C = (\tfrac18,\tfrac{3\sqrt3}8)</math>. Draw a line through <math>C</math> intersecting the <math>x</math>-axis at <math>A'</math> and the <math>y</math>-axis at <math>B'</math>. We shall show that <math>A'B' \ge 1</math>, and that equality only holds when <math>A'=A</math> and <math>B'=B</math>. | + | Let <math>C = (\tfrac18,\tfrac{3\sqrt3}8)</math>. <s>this is sus, furaken randomly guessed C and proceeded to prove it works</s> Draw a line through <math>C</math> intersecting the <math>x</math>-axis at <math>A'</math> and the <math>y</math>-axis at <math>B'</math>. We shall show that <math>A'B' \ge 1</math>, and that equality only holds when <math>A'=A</math> and <math>B'=B</math>. |
Let <math>\theta = \angle OA'C</math>. Draw <math>CD</math> perpendicular to the <math>x</math>-axis and <math>CE</math> perpendicular to the <math>y</math>-axis as shown in the diagram. Then | Let <math>\theta = \angle OA'C</math>. Draw <math>CD</math> perpendicular to the <math>x</math>-axis and <math>CE</math> perpendicular to the <math>y</math>-axis as shown in the diagram. Then |
Revision as of 05:09, 9 February 2024
Let and be points in the coordinate plane. Let be the family of segments of unit length lying in the first quadrant with on the -axis and on the -axis. There is a unique point on distinct from and that does not belong to any segment from other than . Then , where and are relatively prime positive integers. Find .
Solution 1
By Furaken
Let . this is sus, furaken randomly guessed C and proceeded to prove it works Draw a line through intersecting the -axis at and the -axis at . We shall show that , and that equality only holds when and .
Let . Draw perpendicular to the -axis and perpendicular to the -axis as shown in the diagram. Then By some inequality (i forgor its name), We know that . Thus . Equality holds if and only if which occurs when . Guess what, happens to be , thus and . Thus, is the only segment in that passes through . Finally, we calculate , and the answer is .