|
|
Line 19: |
Line 19: |
| | | |
| | | |
− | [asy]
| |
− | import graph; size(13.98cm);
| |
− | real labelscalefactor = 0.5; /* changes label-to-point distance */
| |
− | pen dps = linewidth(0.7) + fontsize(10); defaultpen(dps); /* default pen style */
| |
− | pen dotstyle = black; /* point style */
| |
− | real xmin = -6.22, xmax = 7.76, ymin = -6.56, ymax = 6.3; /* image dimensions */
| |
− |
| |
− | /* draw figures */
| |
− | draw(circle((0.,0.), 4.), linewidth(2.));
| |
− | draw((-3.9904248302051744,0.276603822247635)--(-1.2649110640673522,-3.794733192202055), linewidth(2.));
| |
− | draw((-1.2649110640673522,-3.794733192202055)--(0.28102660741773866,-3.990115793548262), linewidth(2.));
| |
− | draw((0.28102660741773866,-3.990115793548262)--(3.9893832569337877,0.2912408441416967), linewidth(2.));
| |
− | draw((-3.9904248302051744,0.276603822247635)--(0.28102660741773866,-3.990115793548262), linewidth(2.));
| |
− | draw((-3.9904248302051744,0.276603822247635)--(3.797959075020809,-1.2551919631941093), linewidth(2.));
| |
− | draw((0.28102660741773866,-3.990115793548262)--(0.7148182881712134,3.935611110729308), linewidth(2.));
| |
− | draw((3.9893832569337877,0.2912408441416967)--(0.7148182881712134,3.935611110729308), linewidth(2.) + linetype("4 4"));
| |
− | draw((-3.9904248302051744,0.276603822247635)--(3.9893832569337877,0.2912408441416967), linewidth(2.));
| |
− | draw((-1.2649110640673522,-3.794733192202055)--(0.4665755573598317,-0.5999855308790458), linewidth(2.));
| |
− | draw((3.9893832569337877,0.2912408441416967)--(0.4665755573598317,-0.5999855308790458), linewidth(2.));
| |
− | draw((0.28102660741773866,-3.990115793548262)--(3.797959075020809,-1.2551919631941093), linewidth(2.));
| |
− | draw((-1.2649110640673522,-3.794733192202055)--(3.9893832569337877,0.2912408441416967), linewidth(2.));
| |
− | draw((-3.9904248302051744,0.276603822247635)--(0.7148182881712134,3.935611110729308), linewidth(2.));
| |
− | draw((3.797959075020809,-1.2551919631941093)--(3.9893832569337877,0.2912408441416967), linewidth(2.) + linetype("2 2"));
| |
− | /* dots and labels */
| |
− | dot((-1.2649110640673522,-3.794733192202055),dotstyle);
| |
− | label("<math>A</math>", (-1.64,-4.2), NE * labelscalefactor);
| |
− | dot((-3.9904248302051744,0.276603822247635),linewidth(4.pt) + dotstyle);
| |
− | label("<math>D_{2}</math>", (-4.52,0.1), NE * labelscalefactor);
| |
− | dot((0.7148182881712134,3.935611110729308),linewidth(4.pt) + dotstyle);
| |
− | label("<math>E</math>", (0.8,4.1), NE * labelscalefactor);
| |
− | dot((3.9893832569337877,0.2912408441416967),linewidth(4.pt) + dotstyle);
| |
− | label("<math>D</math>", (4.06,0.46), NE * labelscalefactor);
| |
− | dot((0.28102660741773866,-3.990115793548262),linewidth(4.pt) + dotstyle);
| |
− | label("<math>B</math>", (0.2,-4.46), NE * labelscalefactor);
| |
− | dot((3.797959075020809,-1.2551919631941093),linewidth(4.pt) + dotstyle);
| |
− | label("<math>F</math>", (4.04,-1.42), NE * labelscalefactor);
| |
− | dot((0.4665755573598317,-0.5999855308790458),linewidth(4.pt) + dotstyle);
| |
− | label("<math>P</math>", (0.54,-0.44), NE * labelscalefactor);
| |
− | clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);
| |
− | /* end of picture */
| |
− | [/asy]
| |
| ~szhangmath | | ~szhangmath |
| | | |
Problem
In a convex quadrilateral , the diagonal bisects neither the angle
nor the angle . The point lies inside and satisfies
Prove that is a cyclic quadrilateral if and only if
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.
Let be the intersection of and , let be the intersection of and ,
, so , and .
, so , and .
, so is an isosceles triangle.
Since , so and are isosceles triangles. So is on the angle bisector oof , since is
an isosceles trapezoid, so is also on the perpendicular bisector of . So .
~szhangmath
See Also