Difference between revisions of "2024 AIME I Problems/Problem 13"
m (→Solution 2) |
|||
Line 20: | Line 20: | ||
p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1. | p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1. | ||
\end{equation*} | \end{equation*} | ||
− | Here, \(\gcd(p-1,8)\) mustn't be | + | Here, \(\gcd(p-1,8)\) mustn't be divide into \(4\) or otherwise \(p\mid n^{\gcd(p-1,8)}-1\mid n^4-1\), which contradicts. So \(\gcd(p-1,8)=8\), and so \(8\mid p-1\). The smallest such prime is clearly \(p=17=2\times8+1\). |
So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing | So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing | ||
\begin{array}{|c|cccccccccccccccc|} | \begin{array}{|c|cccccccccccccccc|} | ||
Line 29: | Line 29: | ||
So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem, | So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem, | ||
\begin{align*} | \begin{align*} | ||
− | 0&\equiv(17k+2)^4+1\equiv\mathrm | + | 0&\equiv(17k+2)^4+1\equiv\mathrm {4\choose 1}(17k)(2)^3+2^4+1=17(1+32k)\pmod{17^2}\\[3pt] |
\implies0&\equiv1+32k\equiv1-2k\pmod{17}. | \implies0&\equiv1+32k\equiv1-2k\pmod{17}. | ||
\end{align*} | \end{align*} | ||
Line 36: | Line 36: | ||
If \(m\equiv-2\pmod{17}\), let \(m=17k-2\), by the binomial theorem, | If \(m\equiv-2\pmod{17}\), let \(m=17k-2\), by the binomial theorem, | ||
\begin{align*} | \begin{align*} | ||
− | 0&\equiv(17k-2)^4+1\equiv\mathrm | + | 0&\equiv(17k-2)^4+1\equiv\mathrm {4\choose 1}(17k)(-2)^3+2^4+1=17(1-32k)\pmod{17^2}\\[3pt] |
\implies0&\equiv1-32k\equiv1+2k\pmod{17}. | \implies0&\equiv1-32k\equiv1+2k\pmod{17}. | ||
\end{align*} | \end{align*} | ||
Line 43: | Line 43: | ||
If \(m\equiv8\pmod{17}\), let \(m=17k+8\), by the binomial theorem, | If \(m\equiv8\pmod{17}\), let \(m=17k+8\), by the binomial theorem, | ||
\begin{align*} | \begin{align*} | ||
− | 0&\equiv(17k+8)^4+1\equiv\mathrm | + | 0&\equiv(17k+8)^4+1\equiv\mathrm {4\choose 1}(17k)(8)^3+8^4+1=17(241+2048k)\pmod{17^2}\\[3pt] |
\implies0&\equiv241+2048k\equiv3+8k\pmod{17}. | \implies0&\equiv241+2048k\equiv3+8k\pmod{17}. | ||
\end{align*} | \end{align*} | ||
Line 50: | Line 50: | ||
If \(m\equiv-8\pmod{17}\), let \(m=17k-8\), by the binomial theorem, | If \(m\equiv-8\pmod{17}\), let \(m=17k-8\), by the binomial theorem, | ||
\begin{align*} | \begin{align*} | ||
− | 0&\equiv(17k-8)^4+1\equiv\mathrm | + | 0&\equiv(17k-8)^4+1\equiv\mathrm {4\choose 1}(17k)(-8)^3+8^4+1=17(241-2048k)\pmod{17^2}\\[3pt] |
\implies0&\equiv241+2048k\equiv3+9k\pmod{17}. | \implies0&\equiv241+2048k\equiv3+9k\pmod{17}. | ||
\end{align*} | \end{align*} |
Revision as of 20:20, 4 February 2024
Contents
Problem
Let be the least prime number for which there exists a positive integer such that is divisible by . Find the least positive integer such that is divisible by .
Solution
From there, we could get
By doing binomial expansion bash, the four smallest in this case are , yielding
~Bluesoul
Solution 2
If \(p=2\), then \(4\mid n^4+1\) for some integer \(n\). But \(\left(n^2\right)^2\equiv0\) or \(1\pmod4\), so it is impossible. Thus \(p\) is an odd prime.
For integer \(n\) such that \(p^2\mid n^4+1\), we have \(p\mid n^4+1\), hence \(p\nmid n^4-1\), but \(p\mid n^8-1\). By Fermat's theorem, \(p\mid n^{p-1}-1\), so \begin{equation*} p\mid\gcd\left(n^{p-1}-1,n^8-1\right)=n^{\gcd(p-1,8)}-1. \end{equation*} Here, \(\gcd(p-1,8)\) mustn't be divide into \(4\) or otherwise \(p\mid n^{\gcd(p-1,8)}-1\mid n^4-1\), which contradicts. So \(\gcd(p-1,8)=8\), and so \(8\mid p-1\). The smallest such prime is clearly \(p=17=2\times8+1\). So we have to find the smallest positive integer \(m\) such that \(17\mid m^4+1\). We first find the remainder of \(m\) divided by \(17\) by doing \begin{array}{|c|cccccccccccccccc|} \hline \vphantom{\tfrac11}x\bmod{17}&1&2&3&4&5&6&7&8&9&10&11&12&13&14&15&16\\\hline \vphantom{\dfrac11}\left(x^4\right)^2+1\bmod{17}&2&0&14&2&14&5&5&0&0&5&5&14&2&14&0&2\\\hline \end{array} So \(m\equiv\pm2\), \(\pm8\pmod{17}\). If \(m\equiv2\pmod{17}\), let \(m=17k+2\), by the binomial theorem, \begin{align*} 0&\equiv(17k+2)^4+1\equiv\mathrm {4\choose 1}(17k)(2)^3+2^4+1=17(1+32k)\pmod{17^2}\\[3pt] \implies0&\equiv1+32k\equiv1-2k\pmod{17}. \end{align*} So the smallest possible \(k=9\), and \(m=155\).
If \(m\equiv-2\pmod{17}\), let \(m=17k-2\), by the binomial theorem, \begin{align*} 0&\equiv(17k-2)^4+1\equiv\mathrm {4\choose 1}(17k)(-2)^3+2^4+1=17(1-32k)\pmod{17^2}\\[3pt] \implies0&\equiv1-32k\equiv1+2k\pmod{17}. \end{align*} So the smallest possible \(k=8\), and \(m=134\).
If \(m\equiv8\pmod{17}\), let \(m=17k+8\), by the binomial theorem, \begin{align*} 0&\equiv(17k+8)^4+1\equiv\mathrm {4\choose 1}(17k)(8)^3+8^4+1=17(241+2048k)\pmod{17^2}\\[3pt] \implies0&\equiv241+2048k\equiv3+8k\pmod{17}. \end{align*} So the smallest possible \(k=6\), and \(m=110\).
If \(m\equiv-8\pmod{17}\), let \(m=17k-8\), by the binomial theorem, \begin{align*} 0&\equiv(17k-8)^4+1\equiv\mathrm {4\choose 1}(17k)(-8)^3+8^4+1=17(241-2048k)\pmod{17^2}\\[3pt] \implies0&\equiv241+2048k\equiv3+9k\pmod{17}. \end{align*} So the smallest possible \(k=11\), and \(m=179\).
In conclusion, the smallest possible \(m\) is \(\boxed{110}\).
Solution by Quantum-Phantom
Solution 3
We work in the ring \(\mathbb Z/289\mathbb Z\) and use the formula Since \(-\frac12=144\), the expression becomes \(\pm12\pm12i\), and it is easily calculated via Hensel that \(i=38\), thus giving an answer of \(\boxed{110}\).
Video Solution 1 by OmegaLearn.org
Video Solution 2
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
See also
2024 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 12 |
Followed by Problem 14 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.