Difference between revisions of "2024 AIME I Problems/Problem 14"

(Solution 1)
Line 3: Line 3:
  
 
==Solution 1==
 
==Solution 1==
Notice that <math>41=4^2+5^2</math>, <math>89=5^2+8^2</math>, and <math>80=8^2+4^2</math>, let <math>A~(0,0,0)</math>, <math>B~(4,5,0)</math>, <math>C~(0,5,8)</math>, and <math>D~(4,0,8)</math>. Then the plane <math>BCD</math> has a normal
+
Notice that \(41=4^2+5^2\), \(89=5^2+8^2\), and \(80=8^2+4^2\), let \(A~(0,0,0)\), \(B~(4,5,0)\), \(C~(0,5,8)\), and \(D~(4,0,8)\). Then the plane \(BCD\) has a normal
<cmath>
+
\begin{equation*}
 
\mathbf n:=\frac14\overrightarrow{BC}\times\overrightarrow{CD}=\frac14\begin{pmatrix}-4\\0\\8\end{pmatrix}\times\begin{pmatrix}4\\-5\\0\end{pmatrix}=\begin{pmatrix}10\\8\\5\end{pmatrix}.
 
\mathbf n:=\frac14\overrightarrow{BC}\times\overrightarrow{CD}=\frac14\begin{pmatrix}-4\\0\\8\end{pmatrix}\times\begin{pmatrix}4\\-5\\0\end{pmatrix}=\begin{pmatrix}10\\8\\5\end{pmatrix}.
</cmath>
+
\end{equation*}
Hence, the distance from <math>A</math> to plane <math>BCD</math>, or the height of the tetrahedron, is
+
Hence, the distance from \(A\) to plane \(BCD\), or the height of the tetrahedron, is
<cmath>
+
\begin{equation*}
 
h:=\frac{\mathbf n\cdot\overrightarrow{AB}}{|\mathbf n|}=\frac{10\times4+8\times5+5\times0}{\sqrt{10^2+8^2+5^2}}=\frac{80\sqrt{21}}{63}.
 
h:=\frac{\mathbf n\cdot\overrightarrow{AB}}{|\mathbf n|}=\frac{10\times4+8\times5+5\times0}{\sqrt{10^2+8^2+5^2}}=\frac{80\sqrt{21}}{63}.
</cmath>
+
\end{equation*}
Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it <math>S</math>. Then by the volume formula for cones,
+
Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it \(S\). Then by the volume formula for cones,
 
\begin{align*}
 
\begin{align*}
 
\frac13Sh&=V_{D\text-ABC}=V_{I\text-ABC}+V_{I\text-BCD}+V_{I\text-CDA}+V_{I\text-DAB}\\
 
\frac13Sh&=V_{D\text-ABC}=V_{I\text-ABC}+V_{I\text-BCD}+V_{I\text-CDA}+V_{I\text-DAB}\\
 
&=\frac13Sr\cdot4.
 
&=\frac13Sr\cdot4.
 
\end{align*}
 
\end{align*}
Hence, <math>r=\tfrac h4=\tfrac{20\sqrt{21}}{63}</math>, and so the answer is <math>20+21+63=\boxed{104}</math>.
+
Hence, \(r=\tfrac h4=\tfrac{20\sqrt{21}}{63}\), and so the answer is \(20+21+63=\boxed{104}\).
  
 
<font size=2>Solution by Quantum-Phantom</font>
 
<font size=2>Solution by Quantum-Phantom</font>

Revision as of 20:01, 3 February 2024

Problem

Let $ABCD$ be a tetrahedron such that $AB=CD= \sqrt{41}$, $AC=BD= \sqrt{80}$, and $BC=AD= \sqrt{89}$. There exists a point $I$ inside the tetrahedron such that the distances from $I$ to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m \sqrt n}{p}$, where $m$, $n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+p$.

Solution 1

Notice that \(41=4^2+5^2\), \(89=5^2+8^2\), and \(80=8^2+4^2\), let \(A~(0,0,0)\), \(B~(4,5,0)\), \(C~(0,5,8)\), and \(D~(4,0,8)\). Then the plane \(BCD\) has a normal \begin{equation*} \mathbf n:=\frac14\overrightarrow{BC}\times\overrightarrow{CD}=\frac14\begin{pmatrix}-4\\0\\8\end{pmatrix}\times\begin{pmatrix}4\\-5\\0\end{pmatrix}=\begin{pmatrix}10\\8\\5\end{pmatrix}. \end{equation*} Hence, the distance from \(A\) to plane \(BCD\), or the height of the tetrahedron, is \begin{equation*} h:=\frac{\mathbf n\cdot\overrightarrow{AB}}{|\mathbf n|}=\frac{10\times4+8\times5+5\times0}{\sqrt{10^2+8^2+5^2}}=\frac{80\sqrt{21}}{63}. \end{equation*} Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it \(S\). Then by the volume formula for cones, \begin{align*} \frac13Sh&=V_{D\text-ABC}=V_{I\text-ABC}+V_{I\text-BCD}+V_{I\text-CDA}+V_{I\text-DAB}\\ &=\frac13Sr\cdot4. \end{align*} Hence, \(r=\tfrac h4=\tfrac{20\sqrt{21}}{63}\), and so the answer is \(20+21+63=\boxed{104}\).

Solution by Quantum-Phantom

Solution 2

[asy] import three;  currentprojection = orthographic(1,1,1);  triple O = (0,0,0); triple A = (0,2,0); triple B = (0,0,1); triple C = (3,0,0); triple D = (3,2,1); triple E = (3,2,0); triple F = (0,2,1); triple G = (3,0,1);  draw(A--B--C--cycle, red); draw(A--B--D--cycle, red); draw(A--C--D--cycle, red); draw(B--C--D--cycle, red);  draw(E--A--O--C--cycle); draw(D--F--B--G--cycle); draw(O--B); draw(A--F); draw(E--D); draw(C--G);  label("$O$", O, SW); label("$A$", A, NW); label("$B$", B, W); label("$C$", C, S); label("$D$", D, NE); label("$E$", E, SE); label("$F$", F, NW); label("$G$", G, NE); [/asy]


Inscribe tetrahedron $ABCD$ in an rectangular prism as shown above.

By the Pythagorean theorem, we note

\[OA^2 + OB^2 = AB^2 = 41,\] \[OA^2 + OC^2 = AC^2 = 80, \text{and}\] \[OB^2 + OC^2 = BC^2 = 89.\]

Solving yields $OA = 4, OB = 5,$ and $OC = 8.$

Since each face of the tetrahedron is congruent, we know the point we seek is the center of the circumsphere of $ABCD.$ We know all rectangular prisms can be inscribed in a circumsphere, therefore the circumsphere of the rectangular prism is also the circumsphere of $ABCD.$

We know that the distance from all $4$ faces must be the same, so we only need to find the distance from the center to plane $ABC$.

Let $O = (0,0,0), A = (4,0,0), B = (0,5,0),$ and $C = (0,0,8).$ We obtain that the plane of $ABC$ can be marked as $\frac{x}{4} + \frac{y}{5} + \frac{z}{8} = 1,$ or $10x + 8y + 5z - 40 = 0,$ and the center of the prism is $(2,\frac{5}{2},4).$

Using the Point-to-Plane distance formula, our distance is

\[d = \frac{|10\cdot 2 + 8\cdot \frac{5}{2} + 5\cdot 4 - 40|}{\sqrt{10^2 + 8^2 + 5^2}} = \frac{20}{\sqrt{189}} = \frac{20\sqrt{21}}{63}.\]

Our answer is $20 + 21 + 63 = \boxed{104}.$

- spectraldragon8

Solution 3(Formula Abuse)

We use the formula for the volume of iscoceles tetrahedron. $V = \sqrt{(a^2 + b^2 - c^2)(b^2 + c^2 - a^2)(a^2 + c^2 - b^2)/72}$

Note that all faces have equal area due to equal side lengths. By Law of Cosines, we find \[\cos{\angle ACB} = \frac{80 + 89 - 41}{2\sqrt{80\cdot 89}}= \frac{16}{9\sqrt{5}}.\].

From this, we find \[\sin{\angle ACB} = \sqrt{1-\cos^2{\angle ACB}} = \sqrt{1 - \frac{256}{405}} = \sqrt{\frac{149}{405}}\] and can find the area of $\triangle ABC$ as \[A = \frac{1}{2} \sqrt{89\cdot 80}\cdot \sin{\angle ACB} = 6\sqrt{21}.\]

Let $R$ be the distance we want to find. By taking the sum of (equal) volumes \[[ABCI] + [ABDI] + [ACDI] + [BCDI] = V,\] We have \[V = \frac{4AR}{3}.\] Plugging in and simplifying, we get $R = \frac{20\sqrt{21}}{63}$ for an answer of $20 + 21 + 63 = \boxed{104}$

~AtharvNaphade

Video Solution 1 by OmegaLearn.org

https://youtu.be/qtu0HTFCsqc

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png