Difference between revisions of "SANSKAR'S OG PROBLEMS"
m (fixed error and deleted feedback) |
(→Problem 1) |
||
Line 5: | Line 5: | ||
==Problem 1== | ==Problem 1== | ||
Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2=a! +b!</math>. Find <math>a+b</math> . | Let <math>\overline{ab}</math> be a 2-digit [[positive integer]] satisfying <math>\overline{ab}^2=a! +b!</math>. Find <math>a+b</math> . | ||
+ | |||
==Solution 1 (Casework)== | ==Solution 1 (Casework)== | ||
'''Case 1: <math>a>b</math>''' | '''Case 1: <math>a>b</math>''' |
Revision as of 16:40, 3 February 2024
Hi, this page is created by ...~ SANSGANKRSNGUPTA This page contains exclusive problems made by me myself. I am the creator of these OG problems. What OG stands for is a secret! Please post your solutions with your name. If you view this page please increment the below number by one:
Problem 1
Let be a 2-digit positive integer satisfying . Find .
Solution 1 (Casework)
Case 1:
In this case, we have
.
If , we must have
, but this contradicts the original assumption of , so hence we must have .
With this in mind, we consider the unit digit of .
Subcase 1.1:
In this case, we have that
.
There is no apparent contradiction here, so we leave this as it is.
Subcase 1.2:
In this case, we have that
.
This contradicts with the fact that , so this is impossible.
Subcase 1.3:
In this case, we have that
.
However, this is impossible for all .
Subcase 1.4:
In this case, we have that
.
Again, this yields , which, again, contradicts .
Hence, we must have .
Now, with determined by modular arithmetic, we actually plug in the values.
To simplify future calculations, note that
.
For , this does not hold.
For , this does not hold.
For , this does hold. Hence, is a solution.
For , this does not hold.
For , this does not hold.
Hence, there is no positive integers and between and inclusive such that .
Case 2:
For this case, we must have
which is impossible if a is a integer and .
Case 3:
In this case, we have
.
If , we must have
which is impossible since and .
Hence, .
Subcase 3.1:
Testing cases, we can see that there is no such .
Subcase 3.2:
Testing cases, we can see that there is no such .
Subcase 3.3:
Testing cases, we can see that there is no such .
Subcase 3.4:
Testing cases, we can see that there is no such .
We see that . ~Ddk001
Problem2
For any positive integer , >1 can be a perfect square? If yes, give one such . If no, then prove it.