Difference between revisions of "2024 AIME I Problems/Problem 14"

m (problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
 
Let <math>ABCD</math> be a tetrahedron such that <math>AB=CD= \sqrt{41}</math>, <math>AC=BD= \sqrt{80}</math>, and <math>BC=AD= \sqrt{89}</math>. There exists a point <math>I</math> inside the tetrahedron such that the distances from <math>I</math> to each of the faces of the tetrahedron are all equal. This distance can be written in the form <math>\frac{m \sqrt n}{p}</math>, where <math>m</math>, <math>n</math>, and <math>p</math> are positive integers, <math>m</math> and <math>p</math> are relatively prime, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n+p</math>.
 
Let <math>ABCD</math> be a tetrahedron such that <math>AB=CD= \sqrt{41}</math>, <math>AC=BD= \sqrt{80}</math>, and <math>BC=AD= \sqrt{89}</math>. There exists a point <math>I</math> inside the tetrahedron such that the distances from <math>I</math> to each of the faces of the tetrahedron are all equal. This distance can be written in the form <math>\frac{m \sqrt n}{p}</math>, where <math>m</math>, <math>n</math>, and <math>p</math> are positive integers, <math>m</math> and <math>p</math> are relatively prime, and <math>n</math> is not divisible by the square of any prime. Find <math>m+n+p</math>.
 +
 +
==Solution 1==
 +
Notice that <math>41=4^2+5^2</math>, <math>89=5^2+8^2</math>, and <math>80=8^2+4^2</math>, let <math>A~(0,0,0)</math>, <math>B~(4,5,0)</math>, <math>C~(0,5,8)</math>, and <math>D~(4,0,8)</math>. Then the plane <math>BCD</math> has a normal
 +
<cmath>
 +
\mathbf n:=\frac14\overrightarrow{BC}\times\overrightarrow{CD}=\frac14\begin{pmatrix}-4\\0\\8\end{pmatrix}\times\begin{pmatrix}4\\-5\\0\end{pmatrix}=\begin{pmatrix}10\\8\\5\end{pmatrix}.
 +
</cmath>
 +
Hence, the distance from <math>A</math> to plane <math>BCD</math>, or the height of the tetrahedron, is
 +
<cmath>
 +
h:=\frac{\mathbf n\cdot\overrightarrow{AB}}{|\mathbf n|}=\frac{10\times4+8\times5+5\times0}{\sqrt{10^2+8^2+5^2}}=\frac{80\sqrt{21}}{63}.
 +
</cmath>
 +
Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it <math>S</math>. Then by the volume formula for cones,
 +
\begin{align*}
 +
\frac13Sh&=V_{D\text-ABC}=V_{I\text-ABC}+V_{I\text-BCD}+V_{I\text-CDA}+V_{I\text-DAB}\\
 +
&=\frac13Sr\cdot4.
 +
\end{align*}
 +
Hence, <math>r=\tfrac h4=\tfrac{20\sqrt{21}}{63}</math>, and so the answer is <math>20+21+63=\boxed{104}</math>.
 +
 +
<font size=2>Solution by Quantum-Phantom</font>
  
 
==See also==
 
==See also==

Revision as of 19:50, 2 February 2024

Problem

Let $ABCD$ be a tetrahedron such that $AB=CD= \sqrt{41}$, $AC=BD= \sqrt{80}$, and $BC=AD= \sqrt{89}$. There exists a point $I$ inside the tetrahedron such that the distances from $I$ to each of the faces of the tetrahedron are all equal. This distance can be written in the form $\frac{m \sqrt n}{p}$, where $m$, $n$, and $p$ are positive integers, $m$ and $p$ are relatively prime, and $n$ is not divisible by the square of any prime. Find $m+n+p$.

Solution 1

Notice that $41=4^2+5^2$, $89=5^2+8^2$, and $80=8^2+4^2$, let $A~(0,0,0)$, $B~(4,5,0)$, $C~(0,5,8)$, and $D~(4,0,8)$. Then the plane $BCD$ has a normal \[\mathbf n:=\frac14\overrightarrow{BC}\times\overrightarrow{CD}=\frac14\begin{pmatrix}-4\\0\\8\end{pmatrix}\times\begin{pmatrix}4\\-5\\0\end{pmatrix}=\begin{pmatrix}10\\8\\5\end{pmatrix}.\] Hence, the distance from $A$ to plane $BCD$, or the height of the tetrahedron, is \[h:=\frac{\mathbf n\cdot\overrightarrow{AB}}{|\mathbf n|}=\frac{10\times4+8\times5+5\times0}{\sqrt{10^2+8^2+5^2}}=\frac{80\sqrt{21}}{63}.\] Each side of the tetrahedron has the same area due to congruency by "S-S-S", and we call it $S$. Then by the volume formula for cones, \begin{align*} \frac13Sh&=V_{D\text-ABC}=V_{I\text-ABC}+V_{I\text-BCD}+V_{I\text-CDA}+V_{I\text-DAB}\\ &=\frac13Sr\cdot4. \end{align*} Hence, $r=\tfrac h4=\tfrac{20\sqrt{21}}{63}$, and so the answer is $20+21+63=\boxed{104}$.

Solution by Quantum-Phantom

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png