Difference between revisions of "2024 AIME I Problems/Problem 10"

(Solution 2)
Line 9: Line 9:
 
==Solution 2==
 
==Solution 2==
  
Well know <math>AP</math> is the symmedian, which implies <math>\triangle{ABP}\sim \triangle{AMC}</math> where <math>M</math> is the midpoint of <math>BC</math>. By Appolonius theorem, <math>AM=\frac{9}{2}</math>. Thus, we have <math>\frac{AP}{AC}=\frac{AB}{AM}, AP=\frac{100}{13}\implies \boxed{113}</math>
+
Well know <math>AP</math> is the symmedian, which implies <math>\triangle{ABP}\sim \triangle{AMC}</math> where <math>M</math> is the midpoint of <math>BC</math>. By Appolonius theorem, <math>AM=\frac{13}{2}</math>. Thus, we have <math>\frac{AP}{AC}=\frac{AB}{AM}, AP=\frac{100}{13}\implies \boxed{113}</math>
  
 
~Bluesoul
 
~Bluesoul

Revision as of 18:36, 2 February 2024

Problem

Let $ABC$ be a triangle inscribed in circle $\omega$. Let the tangents to $\omega$ at $B$ and $C$ intersect at point $P$, and let $\overline{AP}$ intersect $\omega$ at $D$. Find $AD$, if $AB=5$, $BC=9$, and $AC=10$.

Solution 1

From the tangency condition we have $\let\angle BCD = \let\angle CBD = \let\angle A$. With LoC we have $\cos(A) = \frac{25+100-81}{2*5*10} = \frac{11}{25}$ and $\cos(B) = \frac{81+25-100}{2*9*5} = \frac{1}{15}$. Then, $CD = \frac{\frac{9}{2}}{\cos(A)} = \frac{225}{22}$. Using LoC we can find $AD$: $AD^2 = AC^2 + CD^2 - 2(AC)(CD)\cos(A+C) = 10^2+(\frac{225}{22})^2 + 2(10)\frac{225}{22}\cos(B) = 100 + \frac{225^2}{22^2} + 2(10)\frac{225}{22}*\frac{1}{15} = \frac{5^4*13^2}{484}$. Thus, $AD = \frac{5^2*13}{22}$. By Power of a Point, $DP*AD = CD^2$ so $DP*\frac{5^2*13}{22} = (\frac{225}{22})^2$ which gives $DP = \frac{5^2*9^2}{13*22}$. Finally, we have $AP = AD - DP = \frac{5^2*13}{22} - \frac{5^2*9^2}{13*22} = \frac{100}{13} \rightarrow \boxed{113}$.

~angie.

Solution 2

Well know $AP$ is the symmedian, which implies $\triangle{ABP}\sim \triangle{AMC}$ where $M$ is the midpoint of $BC$. By Appolonius theorem, $AM=\frac{13}{2}$. Thus, we have $\frac{AP}{AC}=\frac{AB}{AM}, AP=\frac{100}{13}\implies \boxed{113}$

~Bluesoul

See also

2024 AIME I (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png