Difference between revisions of "2024 AMC 8 Problems/Problem 2"

Line 1: Line 1:
 +
==Problem==
  
 +
What is the value of the expression in decimal form?
  
'''These are just left here for future conveniency.'''
+
<cmath>\frac{44}{11}+\frac{110}{44}+\frac{44}{1100}</cmath>
  
 +
<math>\textbf{(A) } 6.4 \qquad\textbf{(B) } 6.504 \qquad\textbf{(C) } 6.54 \qquad\textbf{(D) } 6.9 \qquad\textbf{(E) } 6.94</math>
 +
 +
==Solution 1==
 +
 +
We see <math>\frac{44}{11}=4</math>, <math>\frac{110}{44}=2.5</math>, and <math>\frac{44}{1100}=0.04</math>. Thus, <math>4+2.5+0.04=\boxed{\textbf{(C) }6.54}</math>
 +
 +
 +
~MrThinker
 
==Video Solution 1 (easy to digest) by Power Solve==
 
==Video Solution 1 (easy to digest) by Power Solve==
 
https://youtu.be/HE7JjZQ6xCk?si=4I0UO5oOVrC2vJep&t=29
 
https://youtu.be/HE7JjZQ6xCk?si=4I0UO5oOVrC2vJep&t=29

Revision as of 17:37, 25 January 2024

Problem

What is the value of the expression in decimal form?

\[\frac{44}{11}+\frac{110}{44}+\frac{44}{1100}\]

$\textbf{(A) } 6.4 \qquad\textbf{(B) } 6.504 \qquad\textbf{(C) } 6.54 \qquad\textbf{(D) } 6.9 \qquad\textbf{(E) } 6.94$

Solution 1

We see $\frac{44}{11}=4$, $\frac{110}{44}=2.5$, and $\frac{44}{1100}=0.04$. Thus, $4+2.5+0.04=\boxed{\textbf{(C) }6.54}$


~MrThinker

Video Solution 1 (easy to digest) by Power Solve

https://youtu.be/HE7JjZQ6xCk?si=4I0UO5oOVrC2vJep&t=29