Difference between revisions of "1985 AJHSME Problems/Problem 1"

(Add pretty spacing between sections.)
(Solution)
Line 7: Line 7:
  
  
==Solution==
+
==Solution 1==
 
By the [[associative property]], we can rearrange the numbers in the numerator and the denominator. [katex display=true]\frac{3}{3}\cdot \frac{5}{5}\cdot\frac{7}{7}\cdot\frac{9}{9}\cdot\frac{11}{11}=1\cdot1\cdot1\cdot1\cdot1=\boxed{\text{(A)} 1}[/katex]
 
By the [[associative property]], we can rearrange the numbers in the numerator and the denominator. [katex display=true]\frac{3}{3}\cdot \frac{5}{5}\cdot\frac{7}{7}\cdot\frac{9}{9}\cdot\frac{11}{11}=1\cdot1\cdot1\cdot1\cdot1=\boxed{\text{(A)} 1}[/katex]
  
 +
==Solution 2==
 +
Notice that the <math>9 \times 11</math> in the denominator of the first fraction cancels with the same term in the second fraction, and the <math>7</math>s in the numerator and denominator of the second fraction cancel. Then the expression is equal to <math>\frac{3 \times 5}{3 \times 5} = \boxed{\text{(A)} 1}</math>.
  
 
==Video Solution by BoundlessBrain!==
 
==Video Solution by BoundlessBrain!==

Revision as of 17:59, 8 January 2024

Problem

[katex]\dfrac{3\times 5}{9\times 11}\times \dfrac{7\times 9\times 11}{3\times 5\times 7}=[/katex]


[katex]\text{(A)}\ 1 \qquad \text{(B)}\ 0 \qquad \text{(C)}\ 49 \qquad \text{(D)}\ \frac{1}{49} \qquad \text{(E)}\ 50[/katex]


Solution 1

By the associative property, we can rearrange the numbers in the numerator and the denominator. [katex display=true]\frac{3}{3}\cdot \frac{5}{5}\cdot\frac{7}{7}\cdot\frac{9}{9}\cdot\frac{11}{11}=1\cdot1\cdot1\cdot1\cdot1=\boxed{\text{(A)} 1}[/katex]

Solution 2

Notice that the $9 \times 11$ in the denominator of the first fraction cancels with the same term in the second fraction, and the $7$s in the numerator and denominator of the second fraction cancel. Then the expression is equal to $\frac{3 \times 5}{3 \times 5} = \boxed{\text{(A)} 1}$.

Video Solution by BoundlessBrain!

https://youtu.be/eC_Vu3vogHM


See Also

1985 AJHSME (ProblemsAnswer KeyResources)
Preceded by
First
Question
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png