Difference between revisions of "2005 Alabama ARML TST Problems/Problem 5"

(remove wikify)
Line 5: Line 5:
 
We choose two squares to be blue and one to be red; then the green's position is forced. There are <math>{4 \choose 2}{2 \choose 1}=12</math> ways to do this.
 
We choose two squares to be blue and one to be red; then the green's position is forced. There are <math>{4 \choose 2}{2 \choose 1}=12</math> ways to do this.
  
{{wikify}}
 
 
==See Also==
 
==See Also==
 
{{ARML box|year=2005|state=Alabama|num-b=4|num-a=6}}
 
{{ARML box|year=2005|state=Alabama|num-b=4|num-a=6}}
  
 
[[Category:Intermediate Combinatorics Problems]]
 
[[Category:Intermediate Combinatorics Problems]]

Revision as of 11:45, 11 December 2007

Problem

A $2\times 2$ square grid is constructed with four $1\times 1$ squares. The square on the upper left is labeled A, the square on the upper right is labeled B, the square in the lower left is labled C, and the square on the lower right is labeled D. The four squares are to be painted such that 2 are blue, 1 is red, and 1 is green. In how many ways can this be done?

Solution

We choose two squares to be blue and one to be red; then the green's position is forced. There are ${4 \choose 2}{2 \choose 1}=12$ ways to do this.

See Also

2005 Alabama ARML TST (Problems)
Preceded by:
Problem 4
Followed by:
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15