Difference between revisions of "2023 AMC 10B Problems/Problem 6"
(→Video Solution) |
MRENTHUSIASM (talk | contribs) m (→Solution 1) |
||
Line 12: | Line 12: | ||
We find a pattern: if <math>n</math> is a multiple of <math>3</math>, then the term is even, or else it is odd. | We find a pattern: if <math>n</math> is a multiple of <math>3</math>, then the term is even, or else it is odd. | ||
− | There are <math>\lfloor \frac{2023}{3} \rfloor =\boxed{\textbf{(E) }674}</math> multiples of <math>3</math> from <math>1</math> to <math>2023</math>. | + | There are <math>\left\lfloor \frac{2023}{3} \right\rfloor =\boxed{\textbf{(E) }674}</math> multiples of <math>3</math> from <math>1</math> to <math>2023</math>. |
~Mintylemon66 | ~Mintylemon66 |
Revision as of 08:54, 8 January 2024
Contents
Problem
Let , and for . How many terms in the sequence are even?
Solution 1
We calculate more terms:
We find a pattern: if is a multiple of , then the term is even, or else it is odd. There are multiples of from to .
~Mintylemon66
Solution 2
Like in the other solution, we find a pattern, except in a more rigorous way. Since we start with and , the next term is .
We start with odd, then odd, then (the sum of odd and odd) even, (the sum of odd and even) odd, and so on. Basically the pattern goes: odd, odd, even, odd odd, even, odd, odd even…
When we take we get with a remainder of one. So we have full cycles, and an extra odd at the end.
Therefore, there are evens.
~e_is_2.71828
Video Solutions
Video Solution by Math-X (First understand the problem!!!)
https://youtu.be/EuLkw8HFdk4?si=iNQdS6bI38MUha1I&t=1174
~Math-X
https://www.youtube.com/watch?v=cT-0V4a3FYY ~SpreadTheMathLove
https://www.youtube.com/watch?v=wdNGZpTrjxY ~e_is_2.71828
Video Solution
~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)
Video Solution by Interstigation
https://youtu.be/gDnmvcOzxjg?si=cYB6uChy7Ue0UT4L
See also
2023 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.