Difference between revisions of "2005 Alabama ARML TST Problems/Problem 4"

m
Line 1: Line 1:
 
==Problem==
 
==Problem==
For how many [[ordered pair]]s of [[digit]]s <math>\displaystyle (A,B)</math> is <math>\displaystyle 2AB8</math> a [[multiple]] of 12?
+
For how many [[ordered pair]]s of [[digit]]s <math>(A,B)</math> is <math>2AB8</math> a [[multiple]] of 12?
 
==Solution==
 
==Solution==
  
Line 21: Line 21:
 
{{wikify}}
 
{{wikify}}
 
==See also==
 
==See also==
*[[2005 Alabama ARML TST]]
+
{{ARML box|year=2005|state=Alabama|num-b=3|num-a=5}}
*[[2005 Alabama ARML TST Problems/Problem 3 | Previous Problem]]
 
*[[2005 Alabama ARML TST Problems/Problem 5 | Next Problem]]
 

Revision as of 11:41, 11 December 2007

Problem

For how many ordered pairs of digits $(A,B)$ is $2AB8$ a multiple of 12?

Solution

We wish for $2000+100A+10B+8 \equiv 0 \pmod {12}\Longleftrightarrow 4A+10B\equiv 8 \pmod {12} \Longleftrightarrow 2A+5B\equiv 4 \pmod 6$. Thus $B\equiv 0 \pmod 2$. Let $B=2C\rightarrow A+2C\equiv 2 \pmod 3$; $C<5$,$A<10$, one of the eqns. must be true:

$A+2C=2\rightarrow$ 2 ways

$A+2C=5\rightarrow$ 3

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 4

$A+2C=2\rightarrow$ 3

$A+2C=2\rightarrow$ 2 ways

Total of 18 ways.

Template:Wikify

See also

2005 Alabama ARML TST (Problems)
Preceded by:
Problem 3
Followed by:
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15