Difference between revisions of "2017 OIM Problems/Problem 6"
(Created page with "== Problem == Let <math>n > 2</math> be an even positive integer and <math>a_1 < a_2 < \cdots < a_n</math> real numbers such that <math>a_{k+1} -a_k \le 1</math> for all <math...") |
|||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
Let <math>n > 2</math> be an even positive integer and <math>a_1 < a_2 < \cdots < a_n</math> real numbers such that | Let <math>n > 2</math> be an even positive integer and <math>a_1 < a_2 < \cdots < a_n</math> real numbers such that | ||
− | <math>a_{k+1} -a_k \le 1</math> for all <math>k</math> with <math>1 \le k le n-1</math>. Let <math>A</math> be the set of pairs <math>(i, j)</math> with <math>1 \le i < j \le n</math> and <math>j - i</math> even, and let <math>B</math> be the set of pairs <math>(i, j)</math> with <math>1 \le i < j le n</math> and <math>j - i</math> odd. Show that | + | <math>a_{k+1} -a_k \le 1</math> for all <math>k</math> with <math>1 \le k le n-1</math>. Let <math>A</math> be the set of pairs <math>(i, j)</math> with <math>1 \le i < j \le n</math> and <math>j - i</math> even, and let <math>B</math> be the set of pairs <math>(i, j)</math> with <math>1 \le i < j \le n</math> and <math>j - i</math> odd. Show that |
<cmath>\prod_{(i,j)\in A}^{}(a_j-a_i)>\prod_{(i,j)\in B}^{}(a_j-a_i)</cmath> | <cmath>\prod_{(i,j)\in A}^{}(a_j-a_i)>\prod_{(i,j)\in B}^{}(a_j-a_i)</cmath> |
Latest revision as of 13:50, 14 December 2023
Problem
Let be an even positive integer and real numbers such that for all with . Let be the set of pairs with and even, and let be the set of pairs with and odd. Show that
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it.