Difference between revisions of "1992 OIM Problems/Problem 1"
Line 28: | Line 28: | ||
then, <math>S_{20k+p}=k\sum_{i=1}^{20}a_i+\sum_{i=1}^{p}a_i</math> | then, <math>S_{20k+p}=k\sum_{i=1}^{20}a_i+\sum_{i=1}^{p}a_i</math> | ||
− | <math>\begin{cases} | + | Now we calculate <math>a_1</math> through <math>a_{20}: |
+ | |||
+ | </math>\begin{cases} | ||
a_{1}=\frac{(1)(2)}{2}\text{ mod }10=1\text{ mod }10=1\\ | a_{1}=\frac{(1)(2)}{2}\text{ mod }10=1\text{ mod }10=1\\ | ||
a_{2}=\frac{(2)(3)}{2}\text{ mod }10=3\text{ mod }10=3\\ | a_{2}=\frac{(2)(3)}{2}\text{ mod }10=3\text{ mod }10=3\\ | ||
Line 49: | Line 51: | ||
a_{19}=\frac{(19)(20)}{2}\text{ mod }10=190\text{ mod }10=0\\ | a_{19}=\frac{(19)(20)}{2}\text{ mod }10=190\text{ mod }10=0\\ | ||
a_{20}=\frac{(20)(21)}{2}\text{ mod }10=210\text{ mod }10=0 | a_{20}=\frac{(20)(21)}{2}\text{ mod }10=210\text{ mod }10=0 | ||
− | \end{cases} | + | \end{cases}$ |
Revision as of 23:41, 13 December 2023
Problem
For each positive integer , let be the last digit of the number. . Calculate .
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Let and be integers with , and
Since , then
Let
Since
then,
Now we calculate through \begin{cases} a_{1}=\frac{(1)(2)}{2}\text{ mod }10=1\text{ mod }10=1\\ a_{2}=\frac{(2)(3)}{2}\text{ mod }10=3\text{ mod }10=3\\ a_{3}=\frac{(3)(4)}{2}\text{ mod }10=6\text{ mod }10=6\\ a_{4}=\frac{(4)(5)}{2}\text{ mod }10=10\text{ mod }10=0\\ a_{5}=\frac{(5)(6)}{2}\text{ mod }10=15\text{ mod }10=5\\ a_{6}=\frac{(6)(7)}{2}\text{ mod }10=21\text{ mod }10=1\\ a_{7}=\frac{(7)(8)}{2}\text{ mod }10=28\text{ mod }10=8\\ a_{8}=\frac{(8)(9)}{2}\text{ mod }10=36\text{ mod }10=6\\ a_{9}=\frac{(9)(10)}{2}\text{ mod }10=45\text{ mod }10=5\\ a_{10}=\frac{(10)(11)}{2}\text{ mod }10=55\text{ mod }10=5\\ a_{11}=\frac{(11)(12)}{2}\text{ mod }10=66\text{ mod }10=6\\ a_{12}=\frac{(12)(13)}{2}\text{ mod }10=78\text{ mod }10=8\\ a_{13}=\frac{(13)(14)}{2}\text{ mod }10=91\text{ mod }10=1\\ a_{14}=\frac{(14)(15)}{2}\text{ mod }10=105\text{ mod }10=5\\ a_{15}=\frac{(15)(16)}{2}\text{ mod }10=120\text{ mod }10=0\\ a_{16}=\frac{(16)(17)}{2}\text{ mod }10=136\text{ mod }10=6\\ a_{17}=\frac{(17)(18)}{2}\text{ mod }10=153\text{ mod }10=3\\ a_{18}=\frac{(18)(19)}{2}\text{ mod }10=171\text{ mod }10=1\\ a_{19}=\frac{(19)(20)}{2}\text{ mod }10=190\text{ mod }10=0\\ a_{20}=\frac{(20)(21)}{2}\text{ mod }10=210\text{ mod }10=0 \end{cases}$
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.