Difference between revisions of "1992 OIM Problems/Problem 1"
Line 14: | Line 14: | ||
<math>a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10</math> | <math>a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10</math> | ||
+ | <math>a_{20k+p}=\frac{20k^2+20k(p+1)+20kp+p(p+1)}{2}\text{ mod } 10</math> | ||
+ | |||
+ | <math>a_{20k+p}=\left(10(k^2+k(p+1)+kp)+ \frac{p(p+1)}{2} \right)\text{ mod } 10</math> | ||
+ | |||
+ | Since <math>10(k^2+k(p+1)+kp)\text{ mod } 10=0</math>, then | ||
+ | |||
+ | <math>a_{20k+p}=\frac{p(p+1)}{2} \text{ mod } 10 = a_p</math> | ||
Revision as of 23:29, 13 December 2023
Problem
For each positive integer , let be the last digit of the number. . Calculate .
~translated into English by Tomas Diaz. ~orders@tomasdiaz.com
Solution
Let and be integers with , and
Since , then
Let
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.