Difference between revisions of "Bisector"
(→Proportions for bisectors) |
(→Bisector and circumcircle) |
||
Line 40: | Line 40: | ||
==Bisector and circumcircle== | ==Bisector and circumcircle== | ||
− | [[File:Bisector | + | [[File:Bisector divi.png|350px|right]] |
Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. | Let a triangle <math>\triangle ABC, BC = a, AC = b, AB = c</math> be given. | ||
Let segments <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math> | Let segments <math>AA', BB',</math> and <math>CC'</math> be the bisectors of <math>\triangle ABC.</math> | ||
The lines <math>AA', BB',</math> and <math>CC'</math> meet circumcircle <math>ABC (\Omega</math> at points <math>D, E, F,</math> respectively. | The lines <math>AA', BB',</math> and <math>CC'</math> meet circumcircle <math>ABC (\Omega</math> at points <math>D, E, F,</math> respectively. | ||
− | Find <math>\frac {B'I}{B'E}, \frac {DF}{AC}. </math> | + | |
− | Prove that circumcenter of <math>\triangle BA'I</math> lies on <math>DF.</math> | + | Find <math>\frac {B'I}{B'E}, \frac {DF}{AC}.</math> |
+ | Prove that circumcenter <math>J</math> of <math>\triangle BA'I</math> lies on <math>DF.</math> | ||
<i><b>Solution</b></i> | <i><b>Solution</b></i> | ||
Line 51: | Line 52: | ||
<cmath>\frac {B'I}{B'E} = \frac {B'I}{BB'} \cdot \frac {BB'^2}{B'E \cdot BB'} = \frac {a+c}{a + b +c} \cdot \frac {BB'^2}{B'A \cdot B'C}.</cmath> | <cmath>\frac {B'I}{B'E} = \frac {B'I}{BB'} \cdot \frac {BB'^2}{B'E \cdot BB'} = \frac {a+c}{a + b +c} \cdot \frac {BB'^2}{B'A \cdot B'C}.</cmath> | ||
− | <cmath>BB'^2 = 4 \cos^2 \beta \frac {a^2 c^2}{(a+c)^2}, 4 \cos^2 \beta = \frac {(a+b+c)(a | + | <cmath>BB'^2 = 4 \cos^2 \beta \frac {a^2 c^2}{(a+c)^2}, 4 \cos^2 \beta = \frac {(a+b+c)(a - b +c)}{ac},</cmath> |
+ | <cmath>B'A \cdot B'C = \frac {ab}{a+c} \cdot \frac{bc}{a+c} = \frac {a b^2 c}{(a+c)^2} \implies</cmath> | ||
<cmath>\frac {B'I}{B'E} = \frac {a+c}{b} -1.</cmath> | <cmath>\frac {B'I}{B'E} = \frac {a+c}{b} -1.</cmath> | ||
− | <cmath>\angle IAC = \angle DAC = \angle CFD = \angle IFD, \angle FID = \angle AIC \implies \triangle IFD \sim \triangle IAC | + | <cmath>\angle IAC = \angle DAC = \angle CFD = \angle IFD, \angle FID = \angle AIC \implies \triangle IFD \sim \triangle IAC \implies \frac {DF}{AC} = \frac {IF}{AI}.</cmath> |
− | |||
<cmath>AI = \sqrt {bc \frac {b+c-a}{a+b+c}}, FI = c \sqrt {\frac {ab}{(a+b-c)(a+b+c)}}.</cmath> | <cmath>AI = \sqrt {bc \frac {b+c-a}{a+b+c}}, FI = c \sqrt {\frac {ab}{(a+b-c)(a+b+c)}}.</cmath> | ||
<cmath>\frac {DF}{AC} = \frac {IF}{AI} = \sqrt {\frac {ac}{(a+b-c)(-a+b+c)}}.</cmath> | <cmath>\frac {DF}{AC} = \frac {IF}{AI} = \sqrt {\frac {ac}{(a+b-c)(-a+b+c)}}.</cmath> | ||
− | <cmath>\overset{\Large\frown} {BD} + \overset{\Large\frown} {FA} + \overset{\Large\frown} {AE}= \angle BAC + \angle ACB + \angle ABC = 180^circ \implies FD \perp BE.</cmath> | + | <cmath>\overset{\Large\frown} {BD} + \overset{\Large\frown} {FA} + \overset{\Large\frown} {AE}= \angle BAC + \angle ACB + \angle ABC = 180^\circ \implies FD \perp BE.</cmath> |
<cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath> | <cmath>2\angle IBD = 2\angle EBD = \overset{\Large\frown} {EC} + \overset{\Large\frown} {CD} = \overset{\Large\frown} {AE} + \overset{\Large\frown} {BD} = 2 \angle BID.</cmath> | ||
Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | Incenter <math>J</math> belong the bisector <math>BI</math> which is the median of isosceles <math>\triangle IDB.</math> | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 16:45, 9 December 2023
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss
Bisector and circumcircle
Let a triangle be given. Let segments and be the bisectors of The lines and meet circumcircle at points respectively.
Find Prove that circumcenter of lies on
Solution
Incenter belong the bisector which is the median of isosceles
vladimir.shelomovskii@gmail.com, vvsss