Difference between revisions of "Bisector"
(→Division of bisector) |
(→Division of bisector) |
||
Line 21: | Line 21: | ||
Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | Bisector <math>BD = 2 \frac {BC' \cdot BA'}{BC' + BA'} \cos \beta \implies</math> | ||
<cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.</cmath> | <cmath>\frac {BD}{BB'} = \frac{a+c}{a+2b+c}.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Proportions for bisectors== | ||
+ | The bisectors <math>AE</math> and <math>CD</math> of a triangle ABC with <math>\angle B = 60^\circ</math> meet at point <math>I.</math> | ||
+ | |||
+ | Prove <math>\frac {CD}{AE} = \frac {BC}{AB}, DI = IE.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | Denote the angles <math>A = 2\alpha, B = 2\beta = 60^\circ, C = 2 \gamma.</math> | ||
+ | <math>\angle AIE = 180^\circ - \alpha - \gamma = 90^\circ + \beta = 120^\circ \implies B, D, I,</math> and <math>E</math> are concyclic. | ||
+ | <cmath>\angle BEA = \angle BEI = \angle ADC.</cmath> | ||
+ | The area of the <math>\triangle ABC</math> is | ||
+ | <cmath>[ABC] = AB \cdot h_C = AB \cdot CD \cdot \sin \angle ADC = BC \cdot AE \cdot \sin \angle AEB \implies \frac {CD}{AE} = \frac {BC}{AB} = \frac {a}{c}.</cmath> | ||
+ | <cmath>\frac {DI}{IE} = \frac {DI}{DC} \cdot \frac {AE}{IE}\cdot \frac {DC}{AI}= \frac {c}{a+b+c} \cdot \frac {a+b+c} {a} \cdot \frac {a}{c} = 1.</cmath> | ||
'''vladimir.shelomovskii@gmail.com, vvsss''' | '''vladimir.shelomovskii@gmail.com, vvsss''' |
Revision as of 12:41, 8 December 2023
Division of bisector
Let a triangle be given.
Let and be the bisectors of
he segments and meet at point Find
Solution
Similarly
Denote Bisector
Bisector vladimir.shelomovskii@gmail.com, vvsss
Proportions for bisectors
The bisectors and of a triangle ABC with meet at point
Prove
Proof
Denote the angles and are concyclic. The area of the is vladimir.shelomovskii@gmail.com, vvsss