Difference between revisions of "Complex conjugate"
(→Properties) |
(→Properties) |
||
Line 6: | Line 6: | ||
Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers: | Conjugation is its own [[Function/Introduction#The_Inverse_of_a_Function | functional inverse]] and [[commutative property | commutes]] with the usual [[operation]]s on complex numbers: | ||
* <math>\overline{(\overline z)} = z</math> | * <math>\overline{(\overline z)} = z</math> | ||
− | * <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(w \cdot z)}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})}) | + | * <math>\overline{(w \cdot z)} = \overline{w} \cdot \overline{z}</math> (<math>\overline{(w \cdot z)}</math> is the same as <math>\overline{(w \cdot \frac{1}{z})})</math> |
− | * < | + | * <math>\overline{(w + z)} = \overline{w} + \overline{z}</math> (<math>\overline{(w + z)}</math> is the same as <math>\overline{(w + (-z))}) |
− | It also interacts in simple ways with other operations on <math>\mathbb{C}< | + | It also interacts in simple ways with other operations on </math>\mathbb{C}<math>: |
− | * <math>|\overline{z}| = |z|< | + | * </math>|\overline{z}| = |z|<math> |
− | * <math>\overline{z}\cdot z = |z|^2< | + | * </math>\overline{z}\cdot z = |z|^2<math> |
− | * If <math>z = r\cdot e^{it}< | + | * If </math>z = r\cdot e^{it}<math> for </math>r, t \in \mathbb{R}<math>, </math>\overline z = r\cdot e^{-it}<math>. That is, </math>\overline z<math> is the complex number of same [[absolute value]] but opposite [[argument]] of </math>z<math>. |
− | * <math>z + \overline z = 2 \mathrm{Re}(z)< | + | * </math>z + \overline z = 2 \mathrm{Re}(z)<math> where </math>\mathrm{Re}(z)<math> is the [[real part]] of </math>z<math>. |
− | * <math>z - \overline{z} = 2i \mathrm{Im}(z)< | + | * </math>z - \overline{z} = 2i \mathrm{Im}(z)<math> where </math>\mathrm{Im}(z)<math> is the [[imaginary part]] of </math>z$. |
{{stub}} | {{stub}} | ||
[[Category:Number Theory]] | [[Category:Number Theory]] |
Revision as of 09:57, 4 December 2007
The complex conjugate of a complex number is the complex number .
Geometrically, if is a point in the complex plane, is the reflection of across the real axis.
Properties
Conjugation is its own functional inverse and commutes with the usual operations on complex numbers:
- ( is the same as
- ( is the same as \mathbb{C}|\overline{z}| = |z|\overline{z}\cdot z = |z|^2z = r\cdot e^{it}r, t \in \mathbb{R}\overline z = r\cdot e^{-it}\overline zzz + \overline z = 2 \mathrm{Re}(z)\mathrm{Re}(z)zz - \overline{z} = 2i \mathrm{Im}(z)\mathrm{Im}(z)z$.
This article is a stub. Help us out by expanding it.