Difference between revisions of "2003 IMO Problems/Problem 5"
(Created page with "==Problem== Let <math>n</math> be a positive integer and let <math>x_1 \le x_2 \le \cdots \le x_n</math> be real numbers. Prove that <cmath>\left( \sum_{i=1}^{n}\sum_{j=i}^{...") |
|||
Line 9: | Line 9: | ||
==Solution== | ==Solution== | ||
{{solution}} | {{solution}} | ||
+ | We first make use of symmetry to rewrite the inequality as | ||
+ | <cmath>\left(\sum_{1\le i<j\le n}|x_i-x_j|\right)^2\le\frac{n^2-1}3\left(\sum_{1\le i<j\le n}|x_i-x_j|^2\right)</cmath>. | ||
+ | WLOG that <math>x_1\le x_2\le\dots\le x_n</math> and let <math>x_{i-1}-x_i=a_i</math>. The inequality is equivalent to | ||
+ | <cmath>\left(\sum_{1\le i<j\le n}\left(a_i+\dots+a_{j-1}\right) \right)^2\le\frac{n^2-1}3\left(\sum_{1\le i<j\le n}\left(a_i+\dots+a_{j-1}\right)^2\right)</cmath>for all <math>a_1,\dots,a_{n-1}</math>. | ||
+ | But this can be rewritten as | ||
+ | <cmath>\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right) \right)^2\le\frac{n^2-1}3\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)</cmath> | ||
+ | By Cauchy-Schwarz: | ||
+ | \begin{align*} | ||
+ | \left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l^2\right)&\ge\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l\left(a_i+\dots+a_j\right)\right)^2\\ | ||
+ | &=\left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2 | ||
+ | \end{align*} | ||
+ | We claim that | ||
+ | <cmath>\sum_{j-i=l}(a_i+\dots+a_j)=\sum_{j-i=(n-l)}(a_i+\dots+a_j)</cmath>. Indeed, we may consider the <math>l\times(n-l)</math> matrix: | ||
+ | \[ \left( \begin{array}{cccc} | ||
+ | a_1 & a_2 & \dots & a_l \\ | ||
+ | a_2 & a_3 & \dots & a_{l+1} \\ | ||
+ | \vdots & \vdots & \ddots & \vdots\\ | ||
+ | a_{n-l} & a_{n-l+1} & \dots & a_n \end{array} \right)\] | ||
+ | The first sum corresponds to summing the matrix row by row, and the second corresponds to summing it column by column. Thus the two sums are equal, as claimed. | ||
+ | |||
+ | Hence: | ||
+ | \begin{align*} | ||
+ | \left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2&=\left(\sum_{l=1}^{n-1}\frac n2\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2\\ | ||
+ | &=\frac{n^2}4\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2 | ||
+ | \end{align*} | ||
+ | |||
+ | We may also check that | ||
+ | <cmath>\sum_{l=1}^{n-1}\sum_{j-i=l}l^2=\sum_{l=1}^{n-1}(n-l)l^2=\frac{n^4-n^2}{12}</cmath>. Thus we have proven that | ||
+ | <cmath>\frac{n^4-n^2}{12}\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\ge\frac{n^2}4\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2</cmath> | ||
+ | Dividing <math>\frac{n^2}4</math> yields | ||
+ | <cmath>\frac{n^2-1}{3}\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\ge\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2</cmath>as desired. | ||
+ | |||
+ | Furthermore, from Cauchy's equality condition, equality holds if and only if <math>a_1=a_2=\dots=a_{n-1}</math> - that is, when the <math>x_i</math> form an arithmetic sequence. | ||
==See Also== | ==See Also== | ||
{{IMO box|year=2003|num-b=4|num-a=6}} | {{IMO box|year=2003|num-b=4|num-a=6}} |
Revision as of 14:26, 3 December 2023
Problem
Let be a positive integer and let be real numbers. Prove that
with equality if and only if form an arithmetic sequence.
Solution
This problem needs a solution. If you have a solution for it, please help us out by adding it. We first make use of symmetry to rewrite the inequality as . WLOG that and let . The inequality is equivalent to for all . But this can be rewritten as By Cauchy-Schwarz: \begin{align*} \left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_{j}\right)^2\right)\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l^2\right)&\ge\left(\sum_{l=1}^{n-1}\sum_{j-i=l}l\left(a_i+\dots+a_j\right)\right)^2\\ &=\left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2 \end{align*}
We claim that . Indeed, we may consider the matrix: \[ \left( \begin{array}{cccc} a_1 & a_2 & \dots & a_l \\ a_2 & a_3 & \dots & a_{l+1} \\ \vdots & \vdots & \ddots & \vdots\\ a_{n-l} & a_{n-l+1} & \dots & a_n \end{array} \right)\] The first sum corresponds to summing the matrix row by row, and the second corresponds to summing it column by column. Thus the two sums are equal, as claimed.
Hence: \begin{align*} \left(\sum_{l=1}^{n-1}l\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2&=\left(\sum_{l=1}^{n-1}\frac n2\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2\\ &=\frac{n^2}4\left(\sum_{l=1}^{n-1}\sum_{j-i=l}\left(a_i+\dots+a_j\right)\right)^2 \end{align*}
We may also check that . Thus we have proven that Dividing yields as desired.
Furthermore, from Cauchy's equality condition, equality holds if and only if - that is, when the form an arithmetic sequence.
See Also
2003 IMO (Problems) • Resources | ||
Preceded by Problem 4 |
1 • 2 • 3 • 4 • 5 • 6 | Followed by Problem 6 |
All IMO Problems and Solutions |