Difference between revisions of "2013 Canadian MO Problems/Problem 4"
Line 12: | Line 12: | ||
<math>f_j(1/r) =\min (\frac{j}{r}, n)+\min\left(jr, n\right)=f_j(1/r)</math>, | <math>f_j(1/r) =\min (\frac{j}{r}, n)+\min\left(jr, n\right)=f_j(1/r)</math>, | ||
− | and g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil\jr\right\rceil, n\right) = f_j(r)<math> | + | and <math>g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil\jr\right\rceil, n\right) = f_j(r)</math> |
− | Case 1: < | + | Case 1: <math>r=1</math> |
− | Since < | + | Since <math>j \le n</math> in the sum, the |
f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right) | f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right) | ||
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com | ||
{{olution}} | {{olution}} |
Revision as of 16:32, 27 November 2023
Problem
Let be a positive integer. For any positive integer and positive real number , define where denotes the smallest integer greater than or equal to . Prove that for all positive real numbers .
Solution
First thing to note on both functions is the following:
,
and $g_j(1/r) =\min (\lceil frac{j}{r}\rceil, n)+\min\left(\left\lceil\jr\right\rceil, n\right) = f_j(r)$ (Error compiling LaTeX. Unknown error_msg)
Case 1:
Since in the sum, the f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right)
~Tomas Diaz. orders@tomasdiaz.com Template:Olution