Difference between revisions of "2013 Canadian MO Problems/Problem 4"

(Created page with "==Problem == Let <math>n</math> be a positive integer. For any positive integer <math>j</math> and positive real number <math>r</math>, define <cmath> f_j(r) =\min (jr, n)+\m...")
 
Line 7: Line 7:
  
 
==Solution==
 
==Solution==
{{Solution}}
+
 
 +
First we evaluate both functions when <math>r=1</math>
 +
 
 +
Since <math>j \le n</math> in the sum, the
 +
 
 +
 
 +
~Tomas Diaz. orders@tomasdiaz.com
 +
{{olution}}

Revision as of 16:29, 27 November 2023

Problem

Let $n$ be a positive integer. For any positive integer $j$ and positive real number $r$, define \[f_j(r) =\min (jr, n)+\min\left(\frac{j}{r}, n\right),\text{ and }g_j(r) =\min (\lceil jr\rceil, n)+\min\left(\left\lceil\frac{j}{r}\right\rceil, n\right),\] where $\lceil x\rceil$ denotes the smallest integer greater than or equal to $x$. Prove that \[\sum_{j=1}^n f_j(r)\leq n^2+n\leq \sum_{j=1}^n g_j(r)\] for all positive real numbers $r$.

Solution

First we evaluate both functions when $r=1$

Since $j \le n$ in the sum, the


~Tomas Diaz. orders@tomasdiaz.com Template:Olution