Difference between revisions of "2023 AMC 12B Problems/Problem 6"

(Solution 1)
(Answer is (C) 6; (D) is 4)
Line 11: Line 11:
  
 
==Solution 1==
 
==Solution 1==
The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about <math>(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9</math>. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are <math>\boxed{\textbf{(D) 6}}</math> intervals.
+
The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about <math>(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9</math>. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are <math>\boxed{\textbf{(C) 6}}</math> intervals.
  
 
~Aopsthedude
 
~Aopsthedude
  
 
==Solution 2==
 
==Solution 2==
The roots of the factorized polynomial are intervals from numbers 1 to 10. We take each interval as being defined as the number behind it. To make the function positive, we need to have an even number of negative expressions. Real numbers raised to even powers are always positive, so we only focus on <math>x-1</math>, <math>x-3</math>, <math>x-5</math>, <math>x-7</math>, and <math>x-9</math>. The intervals 1 and 2 leave 4 negative expressions, so they are counted. The same goes for intervals 5, 6, 9, and 10. Intervals 3 and 4 leave 3 negative expressions and intervals 7 and 8 leave 1 negative expression. The solution is the number of intervals which is <math>\boxed{\textbf{(D) 6}}</math>.
+
The roots of the factorized polynomial are intervals from numbers 1 to 10. We take each interval as being defined as the number behind it. To make the function positive, we need to have an even number of negative expressions. Real numbers raised to even powers are always positive, so we only focus on <math>x-1</math>, <math>x-3</math>, <math>x-5</math>, <math>x-7</math>, and <math>x-9</math>. The intervals 1 and 2 leave 4 negative expressions, so they are counted. The same goes for intervals 5, 6, 9, and 10. Intervals 3 and 4 leave 3 negative expressions and intervals 7 and 8 leave 1 negative expression. The solution is the number of intervals which is <math>\boxed{\textbf{(C) 6}}</math>.
  
 
~darrenn.cp
 
~darrenn.cp
Line 30: Line 30:
 
This tells us that the interval <math>(1,2)</math> is positive, <math>(2,3)</math> is also positive, <math>(3,4)</math> is negative, <math>(4,5)</math> is also negative, and so on, with the pattern being <math>+,+,-,-,+,+,-,-,...</math> .
 
This tells us that the interval <math>(1,2)</math> is positive, <math>(2,3)</math> is also positive, <math>(3,4)</math> is negative, <math>(4,5)</math> is also negative, and so on, with the pattern being <math>+,+,-,-,+,+,-,-,...</math> .
  
The positive intervals are therefore <math>(1,2)</math>, <math>(2,3)</math>, <math>(5,6)</math>, <math>(6,7)</math>, <math>(9,10)</math>, and <math>(10,\infty)</math>, for a total of <math>\boxed{\textbf{(D) 6}}</math>.
+
The positive intervals are therefore <math>(1,2)</math>, <math>(2,3)</math>, <math>(5,6)</math>, <math>(6,7)</math>, <math>(9,10)</math>, and <math>(10,\infty)</math>, for a total of <math>\boxed{\textbf{(C) 6}}</math>.
  
 
~nm1728 ~ESAOPS (minor edits)
 
~nm1728 ~ESAOPS (minor edits)
Line 53: Line 53:
 
\frac{i^2 - i}{2} \mbox{ is odd}  
 
\frac{i^2 - i}{2} \mbox{ is odd}  
 
  \right\} \\  
 
  \right\} \\  
& = \boxed{\textbf{(D) 6}} .
+
& = \boxed{\textbf{(C) 6}} .
 
\end{align*}
 
\end{align*}
 
</cmath>
 
</cmath>

Revision as of 14:24, 27 November 2023

The following problem is from both the 2023 AMC 10B #12 and 2023 AMC 12B #6, so both problems redirect to this page.

Problem

When the roots of the polynomial

\[P(x)  = (x-1)^1 (x-2)^2 (x-3)^3 \cdot \cdot \cdot (x-10)^{10}\]

are removed from the number line, what remains is the union of 11 disjoint open intervals. On how many of these intervals is $P(x)$ positive?

$\textbf{(A)}~3\qquad\textbf{(B)}~7\qquad\textbf{(C)}~6\qquad\textbf{(D)}~4\qquad\textbf{(E)}~5$

Solution 1

The expressions to the power of even powers are always positive, so we don't need to care about those. We only need to care about $(x-1)^1(x-3)^3(x-5)^5(x-7)^7(x-9)^9$. We need 0, 2, or 4 of the expressions to be negative. The 9 through 10 interval and 10 plus interval make all of the expressions positive. The 5 through 6 and 6 through 7 intervals make two of the expressions negative. The 1 through 2 and 2 through 3 intervals make four of the expressions negative. There are $\boxed{\textbf{(C) 6}}$ intervals.

~Aopsthedude

Solution 2

The roots of the factorized polynomial are intervals from numbers 1 to 10. We take each interval as being defined as the number behind it. To make the function positive, we need to have an even number of negative expressions. Real numbers raised to even powers are always positive, so we only focus on $x-1$, $x-3$, $x-5$, $x-7$, and $x-9$. The intervals 1 and 2 leave 4 negative expressions, so they are counted. The same goes for intervals 5, 6, 9, and 10. Intervals 3 and 4 leave 3 negative expressions and intervals 7 and 8 leave 1 negative expression. The solution is the number of intervals which is $\boxed{\textbf{(C) 6}}$.

~darrenn.cp ~DarkPheonix

Solution 3

We can use the turning point behavior at the roots of a polynomial graph to find out the amount of intervals that are positive.

First, we evaluate any value on the interval $(-\infty, 1)$. Since the degree of $P(x)$ is $1+2+...+9+10$ = $\frac{10\times11}{2}$ = $55$, and every term in $P(x)$ is negative, multiplying $55$ negatives gives a negative value. So $(-\infty, 0)$ is a negative interval.

We know that the roots of $P(x)$ are at $1,2,...,10$. When the degree of the term of each root is odd, the graph of $P(x)$ will pass through the graph and change signs, and vice versa. So at $x=1$, the graph will change signs; at $x=2$, the graph will not, and so on.

This tells us that the interval $(1,2)$ is positive, $(2,3)$ is also positive, $(3,4)$ is negative, $(4,5)$ is also negative, and so on, with the pattern being $+,+,-,-,+,+,-,-,...$ .

The positive intervals are therefore $(1,2)$, $(2,3)$, $(5,6)$, $(6,7)$, $(9,10)$, and $(10,\infty)$, for a total of $\boxed{\textbf{(C) 6}}$.

~nm1728 ~ESAOPS (minor edits)

Solution 4

Denote by $I_k$ the interval $\left( k - 1 , k \right)$ for $k \in \left\{ 2, 3, \cdots , 10 \right\}$ and $I_1$ the interval $\left( - \infty, 1 \right)$.

Therefore, the number of intervals that $P(x)$ is positive is \begin{align*} 1 + \sum_{i=1}^{10} \Bbb I \left\{  \sum_{j=i}^{10} j \mbox{ is even}   \right\}   & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{\left( i + 10 \right) \left( 11 - i \right)}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{- i^2 + i + 110}{2} \mbox{ is even}   \right\} \\  & = 1 + \sum_{i=1}^{10} \Bbb I \left\{ \frac{i^2 - i}{2} \mbox{ is odd}   \right\} \\  & = \boxed{\textbf{(C) 6}} . \end{align*}

~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

Video Solution 1 by OmegaLearn

https://youtu.be/taNU5dQ5-sA

Video Solution

https://youtu.be/j8z8rup7KHc


~Steven Chen (Professor Chen Education Palace, www.professorchenedu.com)

See Also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png