Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"
Line 30: | Line 30: | ||
From <math>a_{2007}+a_{2008}=3</math>, we get <math>\frac{1}{x}+\frac{1}{y}=3</math>. | From <math>a_{2007}+a_{2008}=3</math>, we get <math>\frac{1}{x}+\frac{1}{y}=3</math>. | ||
− | and from <math>a_{2007}\cdot a_{2008}=\frac 13</math>, we get <math>\frac{1}{xy}=\frac{1}{3}</math> | + | and from <math>a_{2007}\cdot a_{2008}=\frac 13</math>, we get <math>\frac{1}{xy}=\frac{1}{3}</math>, thus <math>xy=3</math> |
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com | ||
{{alternate solutions}} | {{alternate solutions}} |
Revision as of 16:58, 26 November 2023
Problem
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Solution
And the sequence repeats every 6 steps.
Therefore,
Since, and , then , and
From , we get .
and from , we get , thus
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.