Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 8"
Line 26: | Line 26: | ||
<math>a_n=a_{n\;mod\;6}</math> | <math>a_n=a_{n\;mod\;6}</math> | ||
− | Since, <math>2007 \equiv 3\;(mod\;6)</math> and <math>2008 \equiv 4\;(mod\;6)</math> | + | Since, <math>2007 \equiv 3\;(mod\;6)</math> and <math>2008 \equiv 4\;(mod\;6)</math>, then <math>a_{2007}=a_3=\frac{1}{x}</math>, and <math>a_{2008}=a_4=\frac{1}{y}</math> |
Revision as of 16:56, 26 November 2023
Problem
A sequence of positive reals defined by , , and for all integers . Given that and , find .
Solution
And the sequence repeats every 6 steps.
Therefore,
Since, and , then , and
~Tomas Diaz. orders@tomasdiaz.com
Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.