Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 10"

Line 18: Line 18:
  
 
<math>P_{n+1}=R(P_n-P_r)+P_r=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{bmatrix}+\begin{bmatrix} 2000-k \\ k \end{bmatrix}=\begin{bmatrix} 2000-P_{y_n} \\ P_{x_n}+2n-2000 \end{bmatrix}</math>
 
<math>P_{n+1}=R(P_n-P_r)+P_r=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{bmatrix}+\begin{bmatrix} 2000-k \\ k \end{bmatrix}=\begin{bmatrix} 2000-P_{y_n} \\ P_{x_n}+2n-2000 \end{bmatrix}</math>
 +
 +
Now we find <math>P_{n+2}</math>:
 +
 +
<math>P_{n+2}=\begin{bmatrix} 2000-P_{y_{n+1}} \\ P_{x_{n+1+}+2n-2000 \end{bmatrix}=\begin{bmatrix} 2000-(P_{x_n}+2n-2000) \\ (2000-P_{y_n})+2(n+1)-2000 \end{bmatrix}</math>
 +
  
  
 
~Tomas Diaz. orders@tomasdiaz.com
 
~Tomas Diaz. orders@tomasdiaz.com

Revision as of 14:17, 25 November 2023

Problem

Given a point $P$ in the coordinate plane, let $T_k(P)$ be the $90^\circ$ rotation of $P$ around the point $(2000-k,k)$. Let $P_0$ be the point $(2007,0)$ and $P_{n+1}=T_n(P_n)$ for all integers $n\ge 0$. If $P_m$ has a $y$-coordinate of $433$, what is $m$?

Solution

Let $R$ be the rotational matrix for a point along the origin:

$R=\begin{bmatrix} cos(\theta) & -sin(\theta)\\ sin(\theta) & cos(\theta) \end{bmatrix}$

For $\theta = 90^\circ$

$R=\begin{bmatrix} cos(90^\circ) & -sin(90^\circ)\\ sin(90^\circ) & cos(90^\circ) \end{bmatrix}=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}$

Let $P_r$ be the point of rotation, then $P_r=\begin{bmatrix} 2000-k \\ k \end{bmatrix}$

Let's write $P_n$ in matrix form as: $P_n=\begin{bmatrix} P_{x_n} \\ P_{y_n} \end{bmatrix}$, where $P_{x_n}$ and $P_{y_n}$ are the $x$ and $y$ coordinates of $P_n$ respectively.

We can write the equation of $P_{n+1}$ by translating the $P_n$ to the origin, multiply it by the rotation matrix $R$ and then add the point subtracted:

$P_{n+1}=R(P_n-P_r)+P_r=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{bmatrix}+\begin{bmatrix} 2000-k \\ k \end{bmatrix}=\begin{bmatrix} 2000-P_{y_n} \\ P_{x_n}+2n-2000 \end{bmatrix}$

Now we find $P_{n+2}$:

$P_{n+2}=\begin{bmatrix} 2000-P_{y_{n+1}} \\ P_{x_{n+1+}+2n-2000 \end{bmatrix}=\begin{bmatrix} 2000-(P_{x_n}+2n-2000) \\ (2000-P_{y_n})+2(n+1)-2000 \end{bmatrix}$ (Error compiling LaTeX. Unknown error_msg)


~Tomas Diaz. orders@tomasdiaz.com