Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 10"
Line 5: | Line 5: | ||
Let <math>R</math> be the rotational matrix for a point along the origin: | Let <math>R</math> be the rotational matrix for a point along the origin: | ||
− | <math>R=\begin{ | + | <math>R=\begin{bmatrix} cos(\theta) & -sin(\theta)\\ sin(\theta) & cos(\theta) \end{bmatrix}</math> |
For <math>\theta = 90^\circ</math> | For <math>\theta = 90^\circ</math> | ||
− | <math>R=\begin{ | + | <math>R=\begin{bmatrix} cos(90^\circ) & -sin(90^\circ)\\ sin(90^\circ) & cos(90^\circ) \end{bmatrix}=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}</math> |
− | Let <math>P_r</math> be the point of rotation, then <math>P_r=\begin{ | + | Let <math>P_r</math> be the point of rotation, then <math>P_r=\begin{bmatrix} 2000-k \\ k \end{bmatrix}</math> |
− | Let's write <math>P_n</math> in matrix form as: <math>P_n=\begin{ | + | Let's write <math>P_n</math> in matrix form as: <math>P_n=\begin{bmatrix} P_{x_n} \\ P_{y_n} \end{bmatrix}</math>, where <math>P_{x_n}</math> and <math>P_{y_n}</math> are the <math>x</math> and <math>y</math> coordinates of <math>P_n</math> respectively. |
We can write the equation of <math>P_{n+1}</math> by translating the <math>P_n</math> to the origin, multiply it by the rotation matrix <math>R</math> and then add the point subtracted: | We can write the equation of <math>P_{n+1}</math> by translating the <math>P_n</math> to the origin, multiply it by the rotation matrix <math>R</math> and then add the point subtracted: | ||
− | <math>P_{n+1}=R(P_n-P_r)+P_r=\begin{ | + | <math>P_{n+1}=R(P_n-P_r)+P_r=\begin{bmatrix} 0 & -1\\ 1 & 0 \end{bmatrix}\begin{bmatrix} P_{x_n}-(2000-k) \\ P_{y_n}-k \end{bmatrix}+\begin{bmatrix} 2000-k \\ k \end{bmatrix}</math> |
~Tomas Diaz. orders@tomasdiaz.com | ~Tomas Diaz. orders@tomasdiaz.com |
Revision as of 14:12, 25 November 2023
Problem
Given a point in the coordinate plane, let be the rotation of around the point . Let be the point and for all integers . If has a -coordinate of , what is ?
Solution
Let be the rotational matrix for a point along the origin:
For
Let be the point of rotation, then
Let's write in matrix form as: , where and are the and coordinates of respectively.
We can write the equation of by translating the to the origin, multiply it by the rotation matrix and then add the point subtracted:
~Tomas Diaz. orders@tomasdiaz.com