Difference between revisions of "Mock AIME 6 2006-2007 Problems/Problem 10"
(Created page with "==Problem== Given a point <math>P</math> in the coordinate plane, let <math>T_k(P)</math> be the <math>90^\circ</math> rotation of <math>P</math> around the point <math>(2000-...") |
|||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | {{ | + | Let <math>R</math> be the rotational matrix for a point along the origin: |
+ | |||
+ | <math>R=\begin{pmatrix} cos(\theta) & -sin(\theta)\\ sin(\theta) & cos(\theta) \end{pmatrix}</math> | ||
+ | |||
+ | For <math>\theta = 90^\circ</math> | ||
+ | |||
+ | <math>R=\begin{pmatrix} cos(90^\circ) & -sin(90^\circ)\\ sin(90^\circ) & cos(90^\circ) \end{pmatrix}=\begin{pmatrix} 0 & -1\\ 1 & 0 \end{pmatrix}</math> | ||
+ | |||
+ | |||
+ | ~Tomas Diaz. orders@tomasdiaz.com |
Revision as of 14:01, 25 November 2023
Problem
Given a point in the coordinate plane, let be the rotation of around the point . Let be the point and for all integers . If has a -coordinate of , what is ?
Solution
Let be the rotational matrix for a point along the origin:
For
~Tomas Diaz. orders@tomasdiaz.com