Difference between revisions of "2022 IMO Problems/Problem 2"

(Solution)
Line 8: Line 8:
  
 
https://youtu.be/b5OZ62vkF9Y  [Video Solution by little fermat]
 
https://youtu.be/b5OZ62vkF9Y  [Video Solution by little fermat]
 +
 +
==See Also==
 +
 +
{{IMO box|year=2022|num-b=1|num-a=3}}

Revision as of 00:54, 19 November 2023

Problem

Let $\mathbb{R}^+$ denote the set of positive real numbers. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that for each $x \in \mathbb{R}^+$, there is exactly one $y \in \mathbb{R}^+$ satisfying

\[xf (y) + yf (x) \le 2\].

Solution

https://www.youtube.com/watch?v=nYD-qIOdi_c [Video contains solutions to all day 1 problems]

https://youtu.be/b5OZ62vkF9Y [Video Solution by little fermat]

See Also

2022 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions