Difference between revisions of "2017 IMO Problems/Problem 2"

(Problem)
Line 4: Line 4:
 
<math>f:\mathbb{R}\rightarrow\mathbb{R}</math> such that for any real numbers <math>x</math> and <math>y</math>
 
<math>f:\mathbb{R}\rightarrow\mathbb{R}</math> such that for any real numbers <math>x</math> and <math>y</math>
  
<math></math>{f(f(x)f(y)) + f(x+y)}<math> =</math>f(xy)<math></math>
+
<cmath>f(f(x)f(y)) + f(x+y)=f(xy)</cmath>
  
 
==Solution==
 
==Solution==

Revision as of 00:40, 19 November 2023

Problem

Let $\mathbb{R}$ be the set of real numbers , determine all functions $f:\mathbb{R}\rightarrow\mathbb{R}$ such that for any real numbers $x$ and $y$

\[f(f(x)f(y)) + f(x+y)=f(xy)\]

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2017 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions