Difference between revisions of "2000 IMO Problems/Problem 2"

(Problem)
Line 3: Line 3:
 
Let <math>a, b, c</math> be positive real numbers with <math>abc=1</math>. Show that
 
Let <math>a, b, c</math> be positive real numbers with <math>abc=1</math>. Show that
  
<cmath>\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) le 1</cmath>
+
<cmath>\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1</cmath>
  
 
==Solution==
 
==Solution==

Revision as of 23:16, 18 November 2023

Problem

Let $a, b, c$ be positive real numbers with $abc=1$. Show that

\[\left( a-1+\frac{1}{b} \right)\left( b-1+\frac{1}{c} \right)\left( c-1+\frac{1}{a} \right) \le 1\]

Solution

This problem needs a solution. If you have a solution for it, please help us out by adding it.

See Also

2000 IMO (Problems) • Resources
Preceded by
Problem 1
1 2 3 4 5 6 Followed by
Problem 3
All IMO Problems and Solutions